oldfstat(2) — Linux manual page


STAT(2)                   Linux Programmer's Manual                  STAT(2)

NAME         top

       stat, fstat, lstat, fstatat - get file status

SYNOPSIS         top

       #include <sys/types.h>
       #include <sys/stat.h>
       #include <unistd.h>

       int stat(const char *pathname, struct stat *statbuf);
       int fstat(int fd, struct stat *statbuf);
       int lstat(const char *pathname, struct stat *statbuf);

       #include <fcntl.h>           /* Definition of AT_* constants */
       #include <sys/stat.h>

       int fstatat(int dirfd, const char *pathname, struct stat *statbuf,
                   int flags);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

           /* glibc 2.19 and earlier */ _BSD_SOURCE
               || /* Since glibc 2.20 */ _DEFAULT_SOURCE
               || _XOPEN_SOURCE >= 500
               || /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L

           Since glibc 2.10:
               _POSIX_C_SOURCE >= 200809L
           Before glibc 2.10:

DESCRIPTION         top

       These functions return information about a file, in the buffer
       pointed to by statbuf.  No permissions are required on the file
       itself, but—in the case of stat(), fstatat(), and lstat()—execute
       (search) permission is required on all of the directories in pathname
       that lead to the file.

       stat() and fstatat() retrieve information about the file pointed to
       by pathname; the differences for fstatat() are described below.

       lstat() is identical to stat(), except that if pathname is a symbolic
       link, then it returns information about the link itself, not the file
       that the link refers to.

       fstat() is identical to stat(), except that the file about which
       information is to be retrieved is specified by the file descriptor

   The stat structure
       All of these system calls return a stat structure, which contains the
       following fields:

           struct stat {
               dev_t     st_dev;         /* ID of device containing file */
               ino_t     st_ino;         /* Inode number */
               mode_t    st_mode;        /* File type and mode */
               nlink_t   st_nlink;       /* Number of hard links */
               uid_t     st_uid;         /* User ID of owner */
               gid_t     st_gid;         /* Group ID of owner */
               dev_t     st_rdev;        /* Device ID (if special file) */
               off_t     st_size;        /* Total size, in bytes */
               blksize_t st_blksize;     /* Block size for filesystem I/O */
               blkcnt_t  st_blocks;      /* Number of 512B blocks allocated */

               /* Since Linux 2.6, the kernel supports nanosecond
                  precision for the following timestamp fields.
                  For the details before Linux 2.6, see NOTES. */

               struct timespec st_atim;  /* Time of last access */
               struct timespec st_mtim;  /* Time of last modification */
               struct timespec st_ctim;  /* Time of last status change */

           #define st_atime st_atim.tv_sec      /* Backward compatibility */
           #define st_mtime st_mtim.tv_sec
           #define st_ctime st_ctim.tv_sec

       Note: the order of fields in the stat structure varies somewhat
       across architectures.  In addition, the definition above does not
       show the padding bytes that may be present between some fields on
       various architectures.  Consult the glibc and kernel source code if
       you need to know the details.

       Note: for performance and simplicity reasons, different fields in the
       stat structure may contain state information from different moments
       during the execution of the system call.  For example, if st_mode or
       st_uid is changed by another process by calling chmod(2) or chown(2),
       stat() might return the old st_mode together with the new st_uid, or
       the old st_uid together with the new st_mode.

       The fields in the stat structure are as follows:

       st_dev This field describes the device on which this file resides.
              (The major(3) and minor(3) macros may be useful to decompose
              the device ID in this field.)

       st_ino This field contains the file's inode number.

              This field contains the file type and mode.  See inode(7) for
              further information.

              This field contains the number of hard links to the file.

       st_uid This field contains the user ID of the owner of the file.

       st_gid This field contains the ID of the group owner of the file.

              This field describes the device that this file (inode) repre‐

              This field gives the size of the file (if it is a regular file
              or a symbolic link) in bytes.  The size of a symbolic link is
              the length of the pathname it contains, without a terminating
              null byte.

              This field gives the "preferred" block size for efficient
              filesystem I/O.

              This field indicates the number of blocks allocated to the
              file, in 512-byte units.  (This may be smaller than
              st_size/512 when the file has holes.)

              This is the time of the last access of file data.

              This is the time of last modification of file data.

              This is the file's last status change timestamp (time of last
              change to the inode).

       For further information on the above fields, see inode(7).

       The fstatat() system call is a more general interface for accessing
       file information which can still provide exactly the behavior of each
       of stat(), lstat(), and fstat().

       If the pathname given in pathname is relative, then it is interpreted
       relative to the directory referred to by the file descriptor dirfd
       (rather than relative to the current working directory of the calling
       process, as is done by stat() and lstat() for a relative pathname).

       If pathname is relative and dirfd is the special value AT_FDCWD, then
       pathname is interpreted relative to the current working directory of
       the calling process (like stat() and lstat()).

       If pathname is absolute, then dirfd is ignored.

       flags can either be 0, or include one or more of the following flags

       AT_EMPTY_PATH (since Linux 2.6.39)
              If pathname is an empty string, operate on the file referred
              to by dirfd (which may have been obtained using the open(2)
              O_PATH flag).  In this case, dirfd can refer to any type of
              file, not just a directory, and the behavior of fstatat() is
              similar to that of fstat().  If dirfd is AT_FDCWD, the call
              operates on the current working directory.  This flag is
              Linux-specific; define _GNU_SOURCE to obtain its definition.

       AT_NO_AUTOMOUNT (since Linux 2.6.38)
              Don't automount the terminal ("basename") component of path‐
              name if it is a directory that is an automount point.  This
              allows the caller to gather attributes of an automount point
              (rather than the location it would mount).  Since Linux 4.14,
              also don't instantiate a nonexistent name in an on-demand di‐
              rectory such as used for automounter indirect maps.  This flag
              has no effect if the mount point has already been mounted

              Both stat() and lstat() act as though AT_NO_AUTOMOUNT was set.

              The AT_NO_AUTOMOUNT can be used in tools that scan directories
              to prevent mass-automounting of a directory of automount

              This flag is Linux-specific; define _GNU_SOURCE to obtain its

              If pathname is a symbolic link, do not dereference it: instead
              return information about the link itself, like lstat().  (By
              default, fstatat() dereferences symbolic links, like stat().)

       See openat(2) for an explanation of the need for fstatat().

RETURN VALUE         top

       On success, zero is returned.  On error, -1 is returned, and errno is
       set appropriately.

ERRORS         top

       EACCES Search permission is denied for one of the directories in the
              path prefix of pathname.  (See also path_resolution(7).)

       EBADF  fd is not a valid open file descriptor.

       EFAULT Bad address.

       ELOOP  Too many symbolic links encountered while traversing the path.

              pathname is too long.

       ENOENT A component of pathname does not exist or is a dangling
              symbolic link.

       ENOENT pathname is an empty string and AT_EMPTY_PATH was not
              specified in flags.

       ENOMEM Out of memory (i.e., kernel memory).

              A component of the path prefix of pathname is not a directory.

              pathname or fd refers to a file whose size, inode number, or
              number of blocks cannot be represented in, respectively, the
              types off_t, ino_t, or blkcnt_t.  This error can occur when,
              for example, an application compiled on a 32-bit platform
              without -D_FILE_OFFSET_BITS=64 calls stat() on a file whose
              size exceeds (1<<31)-1 bytes.

       The following additional errors can occur for fstatat():

       EBADF  dirfd is not a valid file descriptor.

       EINVAL Invalid flag specified in flags.

              pathname is relative and dirfd is a file descriptor referring
              to a file other than a directory.

VERSIONS         top

       fstatat() was added to Linux in kernel 2.6.16; library support was
       added to glibc in version 2.4.

CONFORMING TO         top

       stat(), fstat(), lstat(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1.2008.

       fstatat(): POSIX.1-2008.

       According to POSIX.1-2001, lstat() on a symbolic link need return
       valid information only in the st_size field and the file type of the
       st_mode field of the stat structure.  POSIX.1-2008 tightens the
       specification, requiring lstat() to return valid information in all
       fields except the mode bits in st_mode.

       Use of the st_blocks and st_blksize fields may be less portable.
       (They were introduced in BSD.  The interpretation differs between
       systems, and possibly on a single system when NFS mounts are

NOTES         top

   Timestamp fields
       Older kernels and older standards did not support nanosecond
       timestamp fields.  Instead, there were three timestamp fields—
       st_atime, st_mtime, and st_ctime—typed as time_t that recorded
       timestamps with one-second precision.

       Since kernel 2.5.48, the stat structure supports nanosecond
       resolution for the three file timestamp fields.  The nanosecond
       components of each timestamp are available via names of the form
       st_atim.tv_nsec, if suitable feature test macros are defined.
       Nanosecond timestamps were standardized in POSIX.1-2008, and,
       starting with version 2.12, glibc exposes the nanosecond component
       names if _POSIX_C_SOURCE is defined with the value 200809L or
       greater, or _XOPEN_SOURCE is defined with the value 700 or greater.
       Up to and including glibc 2.19, the definitions of the nanoseconds
       components are also defined if _BSD_SOURCE or _SVID_SOURCE is
       defined.  If none of the aforementioned macros are defined, then the
       nanosecond values are exposed with names of the form st_atimensec.

   C library/kernel differences
       Over time, increases in the size of the stat structure have led to
       three successive versions of stat(): sys_stat() (slot __NR_oldstat),
       sys_newstat() (slot __NR_stat), and sys_stat64() (slot __NR_stat64)
       on 32-bit platforms such as i386.  The first two versions were
       already present in Linux 1.0 (albeit with different names); the last
       was added in Linux 2.4.  Similar remarks apply for fstat() and

       The kernel-internal versions of the stat structure dealt with by the
       different versions are, respectively:

              The original structure, with rather narrow fields, and no

       stat   Larger st_ino field and padding added to various parts of the
              structure to allow for future expansion.

       stat64 Even larger st_ino field, larger st_uid and st_gid fields to
              accommodate the Linux-2.4 expansion of UIDs and GIDs to 32
              bits, and various other enlarged fields and further padding in
              the structure.  (Various padding bytes were eventually
              consumed in Linux 2.6, with the advent of 32-bit device IDs
              and nanosecond components for the timestamp fields.)

       The glibc stat() wrapper function hides these details from
       applications, invoking the most recent version of the system call
       provided by the kernel, and repacking the returned information if
       required for old binaries.

       On modern 64-bit systems, life is simpler: there is a single stat()
       system call and the kernel deals with a stat structure that contains
       fields of a sufficient size.

       The underlying system call employed by the glibc fstatat() wrapper
       function is actually called fstatat64() or, on some architectures,

EXAMPLES         top

       The following program calls lstat() and displays selected fields in
       the returned stat structure.

       #include <sys/types.h>
       #include <sys/stat.h>
       #include <stdint.h>
       #include <time.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <sys/sysmacros.h>

       main(int argc, char *argv[])
           struct stat sb;

           if (argc != 2) {
               fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);

           if (lstat(argv[1], &sb) == -1) {

           printf("ID of containing device:  [%jx,%jx]\n",
                   (uintmax_t) major(sb.st_dev),
                   (uintmax_t) minor(sb.st_dev));

           printf("File type:                ");

           switch (sb.st_mode & S_IFMT) {
           case S_IFBLK:  printf("block device\n");            break;
           case S_IFCHR:  printf("character device\n");        break;
           case S_IFDIR:  printf("directory\n");               break;
           case S_IFIFO:  printf("FIFO/pipe\n");               break;
           case S_IFLNK:  printf("symlink\n");                 break;
           case S_IFREG:  printf("regular file\n");            break;
           case S_IFSOCK: printf("socket\n");                  break;
           default:       printf("unknown?\n");                break;

           printf("I-node number:            %ju\n", (uintmax_t) sb.st_ino);

           printf("Mode:                     %jo (octal)\n",
                   (uintmax_t) sb.st_mode);

           printf("Link count:               %ju\n", (uintmax_t) sb.st_nlink);
           printf("Ownership:                UID=%ju   GID=%ju\n",
                   (uintmax_t) sb.st_uid, (uintmax_t) sb.st_gid);

           printf("Preferred I/O block size: %jd bytes\n",
                   (intmax_t) sb.st_blksize);
           printf("File size:                %jd bytes\n",
                   (intmax_t) sb.st_size);
           printf("Blocks allocated:         %jd\n",
                   (intmax_t) sb.st_blocks);

           printf("Last status change:       %s", ctime(&sb.st_ctime));
           printf("Last file access:         %s", ctime(&sb.st_atime));
           printf("Last file modification:   %s", ctime(&sb.st_mtime));


SEE ALSO         top

       ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), statx(2),
       utime(2), capabilities(7), inode(7), symlink(7)

COLOPHON         top

       This page is part of release 5.09 of the Linux man-pages project.  A
       description of the project, information about reporting bugs, and the
       latest version of this page, can be found at

Linux                            2020-08-13                          STAT(2)

Pages that refer to this page: syscalls(2)