inotify/inotify_dtree.cThis is inotify/inotify_dtree.c, an example to accompany the book, The Linux Programming Interface. This file is not printed in the book; it is a supplementary file for Chapter 19. The source code file is copyright 2024, Michael Kerrisk, and is licensed under the GNU General Public License, version 3. In the listing below, the names of Linux system calls and C library functions are hyperlinked to manual pages from the Linux man-pages project, and the names of functions implemented in the book are hyperlinked to the implementations of those functions.
|
/* inotify_dtree.c This is an example application to demonstrate the robust use of the inotify API. The goal of the application is to maintain an internal representation ("a cache") of the directory trees named on its command line. To keep the application shorter, just the directories are represented, not the files, but dealing with the latter is simpler in any case. As directories are added, removed, and renamed in the subtrees, the resulting inotify events are used to maintain an internal representation of the directory trees that remains consistent with the filesystem. The program also provides a command-line interface that allows the user to perform tasks such as dumping the current state of the cache and running a consistency check of the cache against the current state of the directory tree(s). Testing of this program is ongoing, and bug reports (to mtk@man7.org) are welcome. The rand_dtree.c program can be used to stress test the operation of this program. See also the article "Filesystem notification, part 2: A deeper investigation of inotify" July 2014 https://lwn.net/Articles/605128/ */ /* Known limitations - Pathnames longer than PATH_MAX are not handled. */ #define _GNU_SOURCE #include <sys/select.h> #include <sys/stat.h> #include <limits.h> #include <sys/select.h> #include <sys/inotify.h> #include <fcntl.h> #include <ftw.h> #include <signal.h> #include <stdarg.h> #include <sys/types.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <errno.h> #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \ } while (0) /* logMessage() flags */ #define VB_BASIC 1 /* Basic messages */ #define VB_NOISY 2 /* Verbose messages */ static int verboseMask; static int checkCache; static int dumpCache; static int readBufferSize = 0; static char *stopFile; static int abortOnCacheProblem; static FILE *logfp = NULL; static int inotifyReadCnt = 0; /* Counts number of read()s from inotify file descriptor */ static const int INOTIFY_READ_BUF_LEN = (100 * (sizeof(struct inotify_event) + NAME_MAX + 1)); static void dumpCacheToLog(void);
/* Something went badly wrong. Create a 'stop' file to signal the 'rand_dtree' processes to stop, dump a copy of the cache to the log file, and abort. */ __attribute__ ((__noreturn__)) static void createStopFileAndAbort(void) { open(stopFile, O_CREAT | O_RDWR, 0600); dumpCacheToLog(); abort(); }
/* Write a log message. The message is sent to none, either, or both of stderr and the log file, depending on 'vb_mask' and whether a log file has been specified via command-line options . */ static void logMessage(int vb_mask, const char *format, ...) { va_list argList; /* Write message to stderr if 'vb_mask' is zero, or matches one of the bits in 'verboseMask'. */ if ((vb_mask == 0) || (vb_mask & verboseMask)) { va_start(argList, format); vfprintf(stderr, format, argList); va_end(argList); } /* If we have a log file, write the message there. */ if (logfp != NULL) { va_start(argList, format); vfprintf(logfp, format, argList); va_end(argList); } } /***********************************************************************/
/* Display some information about an inotify event. (Used when when we are doing verbose logging.) */ static void displayInotifyEvent(struct inotify_event *ev) { logMessage(VB_NOISY, "==> wd = %d; ", ev->wd); if (ev->cookie > 0) logMessage(VB_NOISY, "cookie = %4d; ", ev->cookie); logMessage(VB_NOISY, "mask = "); if (ev->mask & IN_ISDIR) logMessage(VB_NOISY, "IN_ISDIR "); if (ev->mask & IN_CREATE) logMessage(VB_NOISY, "IN_CREATE "); if (ev->mask & IN_DELETE_SELF) logMessage(VB_NOISY, "IN_DELETE_SELF "); if (ev->mask & IN_MOVE_SELF) logMessage(VB_NOISY, "IN_MOVE_SELF "); if (ev->mask & IN_MOVED_FROM) logMessage(VB_NOISY, "IN_MOVED_FROM "); if (ev->mask & IN_MOVED_TO) logMessage(VB_NOISY, "IN_MOVED_TO "); if (ev->mask & IN_IGNORED) logMessage(VB_NOISY, "IN_IGNORED "); if (ev->mask & IN_Q_OVERFLOW) logMessage(VB_NOISY, "IN_Q_OVERFLOW "); if (ev->mask & IN_UNMOUNT) logMessage(VB_NOISY, "IN_UNMOUNT "); logMessage(VB_NOISY, "\n"); if (ev->len > 0) logMessage(VB_NOISY, " name = %s\n", ev->name); } /***********************************************************************/ /* Data structures and functions for the watch list cache */ /* We use a very simple data structure for caching watched directory paths: a dynamically sized array that is searched linearly. Not efficient, but our main goal is to demonstrate the use of inotify. */ struct watch { int wd; /* Watch descriptor (-1 if slot unused) */ char path[PATH_MAX]; /* Cached pathname */ }; struct watch *wlCache = NULL; /* Array of cached items */ static int cacheSize = 0; /* Current size of the array */
/* Deallocate the watch cache. */ static void freeCache(void) { free(wlCache); cacheSize = 0; wlCache = NULL; }
/* Check that all pathnames in the cache are valid, and refer to directories. */ static void checkCacheConsistency(void) { struct stat sb; int failures = 0; for (int j = 0; j < cacheSize; j++) { if (wlCache[j].wd >= 0) { if (lstat(wlCache[j].path, &sb) == -1) { logMessage(0, "checkCacheConsistency: stat: " "[slot = %d; wd = %d] %s: %s\n", j, wlCache[j].wd, wlCache[j].path, strerror(errno)); failures++; } } else if (!S_ISDIR(sb.st_mode)) { logMessage(0, "checkCacheConsistency: %s is not a directory\n", wlCache[j].path); exit(EXIT_FAILURE); } } if (failures > 0) logMessage(VB_NOISY, "checkCacheConsistency: %d failures\n", failures); }
/* Check whether the cache contains the watch descriptor 'wd'. If found, return the slot number, otherwise return -1. */ static int findWatch(int wd) { for (int j = 0; j < cacheSize; j++) if (wlCache[j].wd == wd) return j; return -1; }
/* Find and return the cache slot for the watch descriptor 'wd'. The caller expects this watch descriptor to exist. If it does not, there is a problem, which is signaled by a -1 return. */ static int findWatchChecked(int wd) { int slot = findWatch(wd); if (slot >= 0) return slot; logMessage(0, "Could not find watch %d\n", wd); /* With multiple renamers there are still rare cases where the cache is missing entries after a 'Could not find watch' event. It looks as though this is because of races with nftw(), since the cache is (occasionally) re-created with fewer entries than there are objects in the tree(s). Returning -1 to our caller identifies that there's a problem, and the caller should probably trigger a cache rebuild. */ if (abortOnCacheProblem) { createStopFileAndAbort(); } else { return -1; } }
/* Mark a cache entry as unused. */ static void markCacheSlotEmpty(int slot) { logMessage(VB_NOISY, " markCacheSlotEmpty: slot = %d; wd = %d; path = %s\n", slot, wlCache[slot].wd, wlCache[slot].path); wlCache[slot].wd = -1; wlCache[slot].path[0] = '\0'; }
/* Find a free slot in the cache. */ static int findEmptyCacheSlot(void) { const int ALLOC_INCR = 200; for (int j = 0; j < cacheSize; j++) if (wlCache[j].wd == -1) return j; /* No free slot found; resize cache. */ cacheSize += ALLOC_INCR; wlCache = realloc(wlCache, cacheSize * sizeof(struct watch)); if (wlCache == NULL) errExit("realloc"); for (int j = cacheSize - ALLOC_INCR; j < cacheSize; j++) markCacheSlotEmpty(j); return cacheSize - ALLOC_INCR; /* Return first slot in newly allocated space */ }
/* Add an item to the cache. */ static int addWatchToCache(int wd, const char *pathname) { int slot = findEmptyCacheSlot(); wlCache[slot].wd = wd; strncpy(wlCache[slot].path, pathname, PATH_MAX); return slot; }
/* Return the cache slot that corresponds to a particular pathname, or -1 if the pathname is not in the cache. */ static int pathnameToCacheSlot(const char *pathname) { for (int j = 0; j < cacheSize; j++) if (wlCache[j].wd >= 0 && strcmp(wlCache[j].path, pathname) == 0) return j; return -1; }
/* Is 'pathname' in the watch cache? */ static int pathnameInCache(const char *pathname) { return pathnameToCacheSlot(pathname) >= 0; }
/* Dump contents of watch cache to the log file. */ static void dumpCacheToLog(void) { int cnt = 0; for (int j = 0; j < cacheSize; j++) { if (wlCache[j].wd >= 0) { fprintf(logfp, "%d: wd = %d; %s\n", j, wlCache[j].wd, wlCache[j].path); cnt++; } } fprintf(logfp, "Total entries: %d\n", cnt); } /***********************************************************************/ /* Data structures and functions for dealing with the directory pathnames provided as command-line arguments. These directories form the roots of the trees that we will monitor. */ static char **rootDirPaths; /* List of pathnames supplied on command line */ static int numRootDirs; /* Number of pathnames supplied on command line */ static int ignoreRootDirs; /* Number of command-line pathnames that we've ceased to monitor */ static struct stat *rootDirStat; /* stat(2) structures for root directories */
/* Duplicate the pathnames supplied on the command line, perform some sanity checking along the way. */ static void copyRootDirPaths(char *argv[]) { numRootDirs = 0; /* Count the number of root paths, and check that the paths are valid. */ for (char **p = argv; *p != NULL; p++) { struct stat sb; /* Check that command-line arguments are directories. */ if (lstat(*p, &sb) == -1) { fprintf(stderr, "lstat() failed on '%s'\n", *p); exit(EXIT_FAILURE); } if (! S_ISDIR(sb.st_mode)) { fprintf(stderr, "'%s' is not a directory\n", *p); exit(EXIT_FAILURE); } numRootDirs++; } /* Create a copy of the root directory pathnames. */ rootDirPaths = calloc(numRootDirs, sizeof(char *)); if (rootDirPaths == NULL) errExit("calloc"); rootDirStat = calloc(numRootDirs, sizeof(struct stat)); if (rootDirPaths == NULL) errExit("calloc"); for (int j = 0; j < numRootDirs; j++) { rootDirPaths[j] = strdup(argv[j]); if (rootDirPaths[j] == NULL) errExit("strdup"); /* If the same filesystem object appears more than once in the command line, this will cause confusion if we later try to zap an object from the set of root paths. So, reject such duplicates now. Note that we can't just do simple string comparisons of the arguments, since different pathname strings may refer to the same filesystem object (e.g., "mydir" and "./mydir"). So, we use stat() to compare i-node numbers and containing device IDs. */ if (lstat(argv[j], &rootDirStat[j]) == -1) errExit("lstat"); for (int k = 0; k < j; k++) { if ((rootDirStat[j].st_ino == rootDirStat[k].st_ino) && (rootDirStat[j].st_dev == rootDirStat[k].st_dev)) { fprintf(stderr, "Duplicate filesystem objects: %s, %s\n", argv[j], argv[k]); exit(EXIT_FAILURE); } } } ignoreRootDirs = 0; }
/* Return the address of the element in 'rootDirPaths' that points to a string matching 'path', or NULL if there is no match. */ static char ** findRootDirPath(const char *path) { for (int j = 0; j < numRootDirs; j++) if (rootDirPaths[j] != NULL && strcmp(path, rootDirPaths[j]) == 0) return &rootDirPaths[j]; return NULL; }
/* Is 'path' one of the pathnames that was listed on the command line? */ static int isRootDirPath(const char *path) { return findRootDirPath(path) != NULL; }
/* We've ceased to monitor a root directory pathname (probably because it was renamed), so zap this pathname from the root path list. */ static void zapRootDirPath(const char *path) { printf("zapRootDirPath: %s\n", path); char **p = findRootDirPath(path); if (p == NULL) { fprintf(stderr, "zapRootDirPath(): path not found!\n"); exit(EXIT_FAILURE); } *p = NULL; ignoreRootDirs++; if (ignoreRootDirs == numRootDirs) { fprintf(stderr, "No more root paths left to monitor; bye!\n"); exit(EXIT_SUCCESS); } } /***********************************************************************/ /* Below is a function called by nftw() to traverse a directory tree. The function adds a watch for each directory in the tree. Each successful call to this function should return 0 to indicate to nftw() that the tree traversal should continue. */ /* The usual hack for nftw()... We can't pass arguments to the function invoked by nftw(), so we use these global variables to exchange information with the function. */ static int dirCnt; /* Count of directories added to watch list */ static int ifd; /* Inotify file descriptor */
static int traverseTree(const char *pathname, const struct stat *sb, int tflag, struct FTW *ftwbuf) { if (! S_ISDIR(sb->st_mode)) return 0; /* Ignore nondirectory files */ /* Create a watch for this directory. */ int flags = IN_CREATE | IN_MOVED_FROM | IN_MOVED_TO | IN_DELETE_SELF; if (isRootDirPath(pathname)) flags |= IN_MOVE_SELF; int wd = inotify_add_watch(ifd, pathname, flags | IN_ONLYDIR); if (wd == -1) { /* By the time we come to create a watch, the directory might already have been deleted or renamed, in which case we'll get an ENOENT error. In that case, we log the error, but carry on execution. Other errors are unexpected, and if we hit them, we give up. */ logMessage(VB_BASIC, "inotify_add_watch: %s: %s\n", pathname, strerror(errno)); if (errno == ENOENT) return 0; else exit(EXIT_FAILURE); } if (findWatch(wd) >= 0) { /* This watch descriptor is already in the cache; nothing more to do. */ logMessage(VB_BASIC, "WD %d already in cache (%s)\n", wd, pathname); return 0; } dirCnt++; /* Cache information about the watch. */ int slot = addWatchToCache(wd, pathname); /* Print the name of the current directory. */ logMessage(VB_NOISY, " watchDir: wd = %d [cache slot: %d]; %s\n", wd, slot, pathname); return 0; }
/* Add the directory in 'pathname' to the watch list of the inotify file descriptor 'inotifyFd'. The process is recursive: watch items are also created for all of the subdirectories of 'pathname'. Returns number of watches/cache entries added for this subtree. */ static int watchDir(int inotifyFd, const char *pathname) { dirCnt = 0; ifd = inotifyFd; /* Use FTW_PHYS to avoid following soft links to directories (which could lead us in circles). */ /* By the time we come to process 'pathname', it may already have been deleted, so we log errors from nftw(), but keep on going. */ if (nftw(pathname, traverseTree, 20, FTW_PHYS) == -1) logMessage(VB_BASIC, "nftw: %s: %s (directory probably deleted before we " "could watch)\n", pathname, strerror(errno)); return dirCnt; }
/* Add watches and cache entries for a subtree, logging a message noting the number entries added. */ static void watchSubtree(int inotifyFd, char *path) { int cnt = watchDir(inotifyFd, path); logMessage(VB_BASIC, " watchSubtree: %s: %d entries added\n", path, cnt); } /***********************************************************************/
/* The directory oldPathPrefix/oldName was renamed to newPathPrefix/newName. Fix up cache entries for oldPathPrefix/oldName and all of its subdirectories to reflect the change. */ static void rewriteCachedPaths(const char *oldPathPrefix, const char *oldName, const char *newPathPrefix, const char *newName) { char fullPath[PATH_MAX], newPrefix[PATH_MAX]; snprintf(fullPath, sizeof(fullPath), "%s/%s", oldPathPrefix, oldName); snprintf(newPrefix, sizeof(newPrefix), "%s/%s", newPathPrefix, newName); size_t len = strlen(fullPath); logMessage(VB_BASIC, "Rename: %s ==> %s\n", fullPath, newPrefix); for (int j = 0; j < cacheSize; j++) { if (strncmp(fullPath, wlCache[j].path, len) == 0 && (wlCache[j].path[len] == '/' || wlCache[j].path[len] == '\0')) { char newPath[PATH_MAX]; int s = snprintf(newPath, sizeof(newPath), "%s%s", newPrefix, &wlCache[j].path[len]); if (s > sizeof(newPath)) logMessage(VB_BASIC, "Truncated pathname: %s\n", newPath); strncpy(wlCache[j].path, newPath, PATH_MAX); logMessage(VB_NOISY, " wd %d [cache slot %d] ==> %s\n", wlCache[j].wd, j, newPath); } } }
/* Zap watches and cache entries for directory 'path' and all of its subdirectories. Returns number of entries that we (tried to) zap, or -1 if an inotify_rm_watch() call failed. */ static int zapSubtree(int inotifyFd, char *path) { logMessage(VB_NOISY, "Zapping subtree: %s\n", path); size_t len = strlen(path); /* The argument we receive might be a pointer to a pathname string that is actually stored in the cache. If we zap that pathname part way through scanning the whole cache, then chaos results. So, create a temporary copy. */ char *pn = strdup(path); int cnt = 0; for (int j = 0; j < cacheSize; j++) { if (wlCache[j].wd >= 0) { if (strncmp(pn, wlCache[j].path, len) == 0 && (wlCache[j].path[len] == '/' || wlCache[j].path[len] == '\0')) { logMessage(VB_NOISY, " removing watch: wd = %d (%s)\n", wlCache[j].wd, wlCache[j].path); if (inotify_rm_watch(inotifyFd, wlCache[j].wd) == -1) { logMessage(0, "inotify_rm_watch wd = %d (%s): %s\n", wlCache[j].wd, wlCache[j].path, strerror(errno)); /* When we have multiple renamers, sometimes inotify_rm_watch() fails. In this case, we force a cache rebuild by returning -1. (TODO: Is there a better solution?) */ cnt = -1; break; } markCacheSlotEmpty(j); cnt++; } } } free(pn); return cnt; }
/* When the cache is in an unrecoverable state, we discard the current inotify file descriptor ('oldInotifyFd') and create a new one (returned as the function result), and zap and rebuild the cache. If 'oldInotifyFd' is -1, this is the initial build of the cache, or an explicitly requested cache rebuild, so we are a little less verbose, and we reset 'reinitCnt'. */ static int reinitialize(int oldInotifyFd) { static int reinitCnt; if (oldInotifyFd >= 0) { close(oldInotifyFd); reinitCnt++; logMessage(0, "Reinitializing cache and inotify FD (reinitCnt = %d)\n", reinitCnt); } else { logMessage(0, "Initializing cache\n"); reinitCnt = 0; } int inotifyFd = inotify_init(); if (inotifyFd == -1) errExit("inotify_init"); logMessage(VB_BASIC, " new inotifyFd = %d\n", inotifyFd); freeCache(); for (int j = 0; j < numRootDirs; j++) if (rootDirPaths[j] != NULL) watchSubtree(inotifyFd, rootDirPaths[j]); int cnt = 0; for (int j = 0; j < cacheSize; j++) if (wlCache[j].wd >= 0) cnt++; if (oldInotifyFd >= 0) logMessage(0, "Rebuilt cache with %d entries\n", cnt); return inotifyFd; }
/* Process the next inotify event in the buffer specified by 'buf' and 'bufSize'. In most cases, a single event is consumed, but if there is an IN_MOVED_FROM+IN_MOVED_TO pair that share a cookie value, both events are consumed. Returns the number of bytes in the event(s) consumed from 'buf'. */ static size_t processNextInotifyEvent(int *inotifyFd, char *buf, int bufSize, int firstTry) { char fullPath[PATH_MAX + NAME_MAX]; int evCacheSlot; struct inotify_event *ev = (struct inotify_event *) buf; displayInotifyEvent(ev); if (ev->wd != -1 && !(ev->mask & IN_IGNORED)) { /* IN_Q_OVERFLOW has (ev->wd == -1) */ /* Skip IN_IGNORED, since it will come after an event that has already zapped the corresponding cache entry */ /* Cache consistency check; see the discussion of "intra-tree" rename() events. */ evCacheSlot = findWatchChecked(ev->wd); if (evCacheSlot == -1) { /* Cache reached an inconsistent state. */ *inotifyFd = reinitialize(*inotifyFd); /* Discard all remaining events in current read() buffer. */ return INOTIFY_READ_BUF_LEN; } } size_t evLen = sizeof(struct inotify_event) + ev->len; if ((ev->mask & IN_ISDIR) && (ev->mask & (IN_CREATE | IN_MOVED_TO))) { /* A new subdirectory was created, or a subdirectory was renamed into the tree; create watches for it, and all of its subdirectories. */ snprintf(fullPath, sizeof(fullPath), "%s/%s", wlCache[evCacheSlot].path, ev->name); logMessage(VB_BASIC, "Directory creation on wd %d: %s\n", ev->wd, fullPath); /* We only watch the new subtree if it has not already been cached. This deals with a race condition: * On the one hand, the following steps might occur: 1. The "child" directory is created. 2. The "grandchild" directory is created 3. We receive an IN_CREATE event for the creation of the "child" and create a watch and a cache entry for it. 4. To handle the possibility that step 2 came before step 3, we recursively walk through the descendants of the "child" directory, adding any subdirectories to the cache. * On the other hand, the following steps might occur: 1. The "child" directory is created. 3. We receive an IN_CREATE event for the creation of the "child" and create a watch and a cache entry for it. 3. The "grandchild" directory is created 4. During the recursive walk through the descendants of the "child" directory, we cache the "grandchild" and add a watch for it. 5. We receive the IN_CREATE event for the creation of the "grandchild". At this point, we should NOT create a cache entry and watch for the "grandchild" because they already exist. (Creating the watch for the second time is harmless, but adding a second cache for the grandchild would leave the cache in a confused state.) */ if (!pathnameInCache(fullPath)) watchSubtree(*inotifyFd, fullPath); } else if (ev->mask & IN_DELETE_SELF) { /* A directory was deleted. Remove the corresponding item from the cache. */ logMessage(VB_BASIC, "Clearing watchlist item %d (%s)\n", ev->wd, wlCache[evCacheSlot].path); if (isRootDirPath(wlCache[evCacheSlot].path)) zapRootDirPath(wlCache[evCacheSlot].path); markCacheSlotEmpty(evCacheSlot); /* No need to remove the watch; that happens automatically. */ } else if ((ev->mask & (IN_MOVED_FROM | IN_ISDIR)) == (IN_MOVED_FROM | IN_ISDIR)) { /* We have a "moved from" event. To know how to deal with it, we need to determine whether there is a following "moved to" event with a matching cookie value (i.e., an "intra-tree" rename() where the source and destination are inside our monitored trees). If there is not, then we are dealing with a rename() out of our monitored tree(s). We assume that if this is an "intra-tree" rename() event, then the "moved to" event is the next event in the buffer returned by the current read(). (If we are already at the last event in this buffer, then we ask our caller to read a bit more, in the hope of getting the following IN_MOVED_TO event in the next read().) In most cases, the assumption holds. However, where multiple processes are manipulating the tree, we can can get event sequences such as the following: IN_MOVED_FROM (rename(x) by process A) IN_MOVED_FROM (rename(y) by process B) IN_MOVED_TO (rename(y) by process B) IN_MOVED_TO (rename(x) by process A) In principle, there may be arbitrarily complex variations on the above theme. Our assumption that related IN_MOVED_FROM and IN_MOVED_TO events are consecutive is broken by such scenarios. We could try to resolve this issue by extending the window we use to search for IN_MOVED_TO events beyond the next item in the queue. But this must be done heuristically (e.g., limiting the window to N events or to events read within X milliseconds), because sometimes we will have unmatched IN_MOVED_FROM events that result from out-of-tree renames. The heuristic approach is therefore unavoidably racy: there is always a chance that we will fail to match up an IN_MOVED_FROM+IN_MOVED_TO event pair. So, this program takes the simple approach of assuming that an IN_MOVED_FROM+IN_MOVED_TO pair occupy consecutive events in the buffer returned by read(). When that assumption is wrong (and we therefore fail to recognize an intra-tree rename() event), then the rename will be treated as separate "moved from" and "moved to" events, with the result that some watch items and cache entries are zapped and re-created. This causes the watch descriptors in our cache to become inconsistent with the watch descriptors in as yet unread events, because the watches are re-created with different watch descriptor numbers. Once such an inconsistency occurs, then, at some later point, we will do a lookup for a watch descriptor returned by inotify, and find that it is not in our cache. When that happens, we reinitialize our cache with a fresh set of watch descriptors and re-create the inotify file descriptor, in order to bring our cache back into consistency with the filesystem. An alternative would be to cache the cookies of the (recent) IN_MOVED_FROM events for which which we did not find a matching IN_MOVED_TO event, and rebuild our watch cache when we find an IN_MOVED_TO event whose cookie matches one of the cached cookies. Yet another approach when we detect an out-of-tree rename would be to reinitialize the cache and create a new inotify file descriptor. (TODO: consider the fact that for a rename event, there won't be other events for the object between IN_MOVED_FROM and IN_MOVED_TO.) Rebuilding the watch cache is expensive if the monitored tree is large. So, there is a trade-off between how much effort we want to go to to avoid cache rebuilds versus how much effort we want to devote to matching up IN_MOVED_FROM+IN_MOVED_TO event pairs. At the one extreme we would do no search ahead for IN_MOVED_TO, with the result that every rename() potentially could trigger a cache rebuild. Limiting the search window to just the following event is a compromise that catches the vast majority of intra-tree renames and triggers relatively few cache rebuilds. */ struct inotify_event *nextEv; nextEv = (struct inotify_event *) (buf + evLen); if (((char *) nextEv < buf + bufSize) && (nextEv->mask & IN_MOVED_TO) && (nextEv->cookie == ev->cookie)) { int nextEvCacheSlot; /* We have a rename() event. We need to fix up the cached pathnames for the corresponding directory and all of its subdirectories. */ nextEvCacheSlot = findWatchChecked(nextEv->wd); if (nextEvCacheSlot == -1) { /* Cache reached an inconsistent state. */ *inotifyFd = reinitialize(*inotifyFd); /* Discard all remaining events in current read() buffer. */ return INOTIFY_READ_BUF_LEN; } rewriteCachedPaths(wlCache[evCacheSlot].path, ev->name, wlCache[nextEvCacheSlot].path, nextEv->name); /* We have also processed the next (IN_MOVED_TO) event, so skip over it. */ evLen += sizeof(struct inotify_event) + nextEv->len; } else if (((char *) nextEv < buf + bufSize) || !firstTry) { /* We got a "moved from" event without an accompanying "moved to" event. The directory has been moved outside the tree we are monitoring. We need to remove the watches and zap the cache entries for the moved directory and all of its subdirectories. */ logMessage(VB_NOISY, "MOVED_OUT: %p %p\n", wlCache[evCacheSlot].path, ev->name); logMessage(VB_NOISY, "firstTry = %d; remaining bytes = %d\n", firstTry, buf + bufSize - (char *) nextEv); snprintf(fullPath, sizeof(fullPath), "%s/%s", wlCache[evCacheSlot].path, ev->name); if (zapSubtree(*inotifyFd, fullPath) == -1) { /* Cache reached an inconsistent state. */ *inotifyFd = reinitialize(*inotifyFd); /* Discard all remaining events in current read() buffer. */ return INOTIFY_READ_BUF_LEN; } } else { logMessage(VB_NOISY, "HANGING IN_MOVED_FROM\n"); return -1; /* Tell our caller to do another read() */ } } else if (ev->mask & IN_Q_OVERFLOW) { static int overflowCnt = 0; overflowCnt++; logMessage(0, "Queue overflow (%d) (inotifyReadCnt = %d)\n", overflowCnt, inotifyReadCnt); /* When the queue overflows, some events are lost, at which point we've lost any chance of keeping our cache consistent with the state of the filesystem. So, discard this inotify file descriptor and create a new one, and zap and rebuild the cache. */ *inotifyFd = reinitialize(*inotifyFd); /* Discard all remaining events in current read() buffer. */ evLen = INOTIFY_READ_BUF_LEN; } else if (ev->mask & IN_UNMOUNT) { /* When a filesystem is unmounted, each of the watches on the filesystem is dropped, and an unmount and an ignore event are generated. There's nothing left for us to monitor, so we just zap the corresponding cache entry. */ logMessage(0, "Filesystem unmounted: %s\n", wlCache[evCacheSlot].path); markCacheSlotEmpty(evCacheSlot); /* No need to remove the watch; that happens automatically. */ } else if (ev->mask & IN_MOVE_SELF && isRootDirPath(wlCache[evCacheSlot].path)) { /* If the root path moves to a new location in the same filesystem, then all cached pathnames become invalid, and we have no direct way of knowing the new name of the root path. We could in theory find the new name by caching the i-node of the root path on start-up and then trying to find a pathname that corresponds to that i-node. Instead, we'll keep things simple, and just cease monitoring it. */ logMessage(0, "Root path moved: %s\n", wlCache[evCacheSlot].path); zapRootDirPath(wlCache[evCacheSlot].path); if (zapSubtree(*inotifyFd, wlCache[evCacheSlot].path) == -1) { /* Cache reached an inconsistent state. */ *inotifyFd = reinitialize(*inotifyFd); /* Discard all remaining events in current read() buffer. */ return INOTIFY_READ_BUF_LEN; } } if (checkCache) checkCacheConsistency(); if (dumpCache) dumpCacheToLog(); return evLen; }
static void alarmHandler(int sig) { return; /* Just interrupt read() */ }
/* Read a block of events from the inotify file descriptor, 'inotifyFd'. Process the events relating to directories in the subtree we are monitoring, in order to keep our cached view of the subtree in sync with the filesystem. */ static void processInotifyEvents(int *inotifyFd) { char buf[INOTIFY_READ_BUF_LEN] __attribute__ ((aligned(__alignof__(struct inotify_event)))); /* SIGALRM handler is designed simply to interrupt read(). */ struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_handler = alarmHandler; sa.sa_flags = 0; if (sigaction(SIGALRM, &sa, NULL) == -1) errExit("sigaction"); int firstTry = 1; /* Read some events from inotify file descriptor. */ size_t cnt = (readBufferSize > 0) ? readBufferSize : INOTIFY_READ_BUF_LEN; ssize_t numRead = read(*inotifyFd, buf, cnt); if (numRead == -1) errExit("read"); if (numRead == 0) { fprintf(stderr, "read() from inotify fd returned 0!"); exit(EXIT_FAILURE); } inotifyReadCnt++; logMessage(VB_NOISY, "\n==========> Read %d: got %zd bytes\n", inotifyReadCnt, numRead); /* Process each event in the buffer returned by read(). */ for (char *evp = buf; evp < buf + numRead; ) { int evLen = processNextInotifyEvent(inotifyFd, evp, buf + numRead - evp, firstTry); if (evLen > 0) { evp += evLen; firstTry = 1; } else { /* We got here because an IN_MOVED_FROM event was found at the end of a previously read buffer and that event may be part of an "intra-tree" rename(), meaning that we should check if there is a subsequent IN_MOVED_TO event with the same cookie value. We left that event unprocessed and we will now try to read some more events, delaying for a short time, to give the associated IN_MOVED_IN event (if there is one) a chance to arrive. However, we only want to do this once: if the read() below fails to gather further events, then when we reprocess the IN_MOVED_FROM we should treat it as though this is an out-of-tree rename(). Thus, we set 'firstTry' to 0 for the next processNextInotifyEvent() call. */ firstTry = 0; numRead = buf + numRead - evp; /* Shuffle remaining bytes to start of buffer. */ for (int j = 0; j < numRead; j++) buf[j] = evp[j]; /* Set a timeout for read(). Some rough testing suggests that a 2-millisecond timeout is sufficient to ensure that, in around 99.8% of cases, we get the IN_MOVED_TO event (if there is one) that matched an IN_MOVED_FROM event, even in a highly dynamic directory tree. This number may, of course, warrant tuning on different hardware and in environments with different filesystem activity levels. */ ualarm(2000, 0); ssize_t nr = read(*inotifyFd, buf + numRead, INOTIFY_READ_BUF_LEN - numRead); int savedErrno = errno; ualarm(0, 0); /* Cancel alarm */ errno = savedErrno; if (nr == -1 && errno != EINTR) errExit("read"); if (nr == 0) { fprintf(stderr, "read() from inotify fd returned 0!"); exit(EXIT_FAILURE); } if (errno != -1) { numRead += nr; inotifyReadCnt++; logMessage(VB_NOISY, "\n==========> SECONDARY Read %d: got %zd bytes\n", inotifyReadCnt, nr); } else { /* EINTR */ logMessage(VB_NOISY, "\n==========> SECONDARY Read got nothing\n"); } evp = buf; /* Start again at beginning of buffer */ } } }
static void displayCommandList(void) { printf("Commands:\n"); printf("0 Rebuild cache\n"); printf("a path Add/refresh pathname watches and cache\n"); printf("c Verify cached pathnames\n"); printf("d Toggle cache dumping\n"); printf("l List cached pathnames\n"); printf("q Quit\n"); printf("v [n] Toggle/set verbose level for messages to stderr\n"); printf(" 0 = no messages\n"); printf(" 1 = basic messages\n"); printf(" 2 = verbose messages\n"); printf(" 3 = basic and verbose messages\n"); printf("w file Write directory list to file\n"); printf("x Toggle cache checking\n"); printf("z path Zap pathname and watches from cache\n"); } /***********************************************************************/
static void checkAllCachedPathnamesExist(char cmd) { int cnt = 0; int failures = 0; for (int j = 0; j < cacheSize; j++) { if (wlCache[j].wd >= 0) { struct stat sb; if (lstat(wlCache[j].path, &sb) == -1) { if (cmd == 'c') logMessage(VB_BASIC, "stat: [slot = %d; wd = %d] %s: %s\n", j, wlCache[j].wd, wlCache[j].path, strerror(errno)); failures++; } else if (!S_ISDIR(sb.st_mode)) { if (cmd == 'c') logMessage(0, "%s is not a directory\n", wlCache[j].path); exit(EXIT_FAILURE); } else { if (cmd == 'c') logMessage(VB_NOISY, "OK: [slot = %d; wd = %d] %s\n", j, wlCache[j].wd, wlCache[j].path); cnt++; } } } logMessage(0, "Successfully verified %d entries\n", cnt); logMessage(0, "Failures: %d\n", failures); }
/* We allow some simple interactive commands, mainly to check the operation of the program. */ static void executeCommand(int *inotifyFd) { const int MAX_LINE = 100; char line[MAX_LINE], arg[MAX_LINE]; int cnt; FILE *fp; ssize_t numRead = read(STDIN_FILENO, line, MAX_LINE); if (numRead <= 0) { printf("bye!\n"); exit(EXIT_FAILURE); } line[numRead - 1] = '\0'; if (strlen(line) == 0) return; char cmd; int ns = sscanf(line, "%c %s\n", &cmd, arg); switch (cmd) { case 'a': /* Add/refresh a subtree */ cnt = zapSubtree(*inotifyFd, arg); if (cnt == 0) { logMessage(VB_BASIC, "Adding new subtree: %s\n", arg); } else { logMessage(VB_BASIC, "Zapped: %s, %d entries\n", arg, cnt); } watchSubtree(*inotifyFd, arg); break; case 'c': /* Check that all cached pathnames exist */ case 'C': checkAllCachedPathnamesExist(cmd); break; case 'l': /* List entries in the cache */ cnt = 0; for (int j = 0; j < cacheSize; j++) { if (wlCache[j].wd >= 0) { logMessage(0, "%d: %d %s\n", j, wlCache[j].wd, wlCache[j].path); cnt++; } } logMessage(VB_BASIC, "Total entries: %d\n", cnt); break; case 'q': /* Quit */ exit(EXIT_SUCCESS); case 'v': /* Set log verbosity level */ if (ns == 2) verboseMask = atoi(arg); else { verboseMask = !verboseMask; printf("%s\n", verboseMask ? "on" : "off"); } break; case 'd': /* Toggle cache dumping */ dumpCache = !dumpCache; printf("%s\n", dumpCache ? "on" : "off"); break; case 'x': /* Set toggle checking */ checkCache = !checkCache; printf("%s\n", checkCache ? "on" : "off"); break; case 'w': /* Write directory list to file */ /* We can compare the output from the below against the output from "find DIR -type d" to check whether the contents of the cache are consistent with the state of the filesystem. */ fp = fopen(arg, "w+"); if (fp == NULL) perror("fopen"); for (int j = 0; j < cacheSize; j++) if (wlCache[j].wd >= 0) fprintf(fp, "%s\n", wlCache[j].path); fclose(fp); break; case 'z': /* Stop watching a subtree, and zap its cache entries */ cnt = zapSubtree(*inotifyFd, arg); logMessage(VB_BASIC, "Zapped: %s, %d entries\n", arg, cnt); break; case '0': /* Rebuild cache */ close(*inotifyFd); *inotifyFd = reinitialize(-1); break; default: printf("Unrecognized command: %c\n", cmd); displayCommandList(); break; } } /***********************************************************************/
static void usageError(const char *pname) { fprintf(stderr, "Usage: %s [options] directory-path...\n\n", pname); fprintf(stderr, " -v lvl Display logging information\n"); fprintf(stderr, " -l file Send logging information to a file\n"); fprintf(stderr, " -x Check cache consistency after each " "operation\n"); fprintf(stderr, " -d Dump cache to log after every operation\n"); fprintf(stderr, " -b size Set buffer size for read() from " "inotify FD\n"); fprintf(stderr, " -a file Abort when cache inconsistency detected, " "and create 'stop' file\n"); exit(EXIT_FAILURE); }
int main(int argc, char *argv[]) { /* Parse command-line options. */ verboseMask = 0; checkCache = 0; dumpCache = 0; stopFile = NULL; abortOnCacheProblem = 0; int opt; while ((opt = getopt(argc, argv, "a:dxl:v:b:")) != -1) { switch (opt) { case 'a': abortOnCacheProblem = 1; stopFile = optarg; break; case 'x': checkCache = 1; break; case 'd': dumpCache = 1; break; case 'v': verboseMask = atoi(optarg); break; case 'b': readBufferSize = atoi(optarg); break; case 'l': logfp = fopen(optarg, "w+"); if (logfp == NULL) errExit("fopen"); setbuf(logfp, NULL); break; default: usageError(argv[0]); } } if (optind >= argc) usageError(argv[0]); /* Save a copy of the directories on the command line. */ copyRootDirPaths(&argv[optind]); /* Create an inotify instance and populate it with entries for the directories named on command line. */ int inotifyFd = reinitialize(-1); /* Loop to handle inotify events and keyboard commands. */ printf("%s> ", argv[0]); fflush(stdout); for (;;) { fd_set rfds; FD_ZERO(&rfds); FD_SET(STDIN_FILENO, &rfds); FD_SET(inotifyFd, &rfds); if (select(inotifyFd + 1, &rfds, NULL, NULL, NULL) == -1) errExit("select"); if (FD_ISSET(STDIN_FILENO, &rfds)) { executeCommand(&inotifyFd); printf("%s> ", argv[0]); fflush(stdout); } if (FD_ISSET(inotifyFd, &rfds)) processInotifyEvents(&inotifyFd); } exit(EXIT_SUCCESS); }
Note that, in most cases, the programs rendered in these web pages are not free standing: you'll typically also need a few other source files (mostly in the lib/ subdirectory) as well. Generally, it's easier to just download the entire source tarball and build the programs with make(1). By hovering your mouse over the various hyperlinked include files and function calls above, you can see which other source files this file depends on.