|
NAME | SYNOPSIS | DESCRIPTION | SEPARATE CHANGES | MANAGING BRANCHES | DISTRIBUTED WORKFLOWS | SEE ALSO | GIT | COLOPHON |
|
|
|
GITWORKFLOWS(7) Git Manual GITWORKFLOWS(7)
gitworkflows - An overview of recommended workflows with Git
git *
This document attempts to write down and motivate some of the
workflow elements used for git.git itself. Many ideas apply in
general, though the full workflow is rarely required for smaller
projects with fewer people involved.
We formulate a set of rules for quick reference, while the prose
tries to motivate each of them. Do not always take them literally;
you should value good reasons for your actions higher than
manpages such as this one.
As a general rule, you should try to split your changes into small
logical steps, and commit each of them. They should be consistent,
working independently of any later commits, pass the test suite,
etc. This makes the review process much easier, and the history
much more useful for later inspection and analysis, for example
with git-blame(1) and git-bisect(1).
To achieve this, try to split your work into small steps from the
very beginning. It is always easier to squash a few commits
together than to split one big commit into several. Don’t be
afraid of making too small or imperfect steps along the way. You
can always go back later and edit the commits with git rebase
--interactive before you publish them. You can use git stash push
--keep-index to run the test suite independent of other
uncommitted changes; see the EXAMPLES section of git-stash(1).
There are two main tools that can be used to include changes from
one branch on another: git-merge(1) and git-cherry-pick(1).
Merges have many advantages, so we try to solve as many problems
as possible with merges alone. Cherry-picking is still
occasionally useful; see "Merging upwards" below for an example.
Most importantly, merging works at the branch level, while
cherry-picking works at the commit level. This means that a merge
can carry over the changes from 1, 10, or 1000 commits with equal
ease, which in turn means the workflow scales much better to a
large number of contributors (and contributions). Merges are also
easier to understand because a merge commit is a "promise" that
all changes from all its parents are now included.
There is a tradeoff of course: merges require a more careful
branch management. The following subsections discuss the important
points.
Graduation
As a given feature goes from experimental to stable, it also
"graduates" between the corresponding branches of the software.
git.git uses the following integration branches:
• maint tracks the commits that should go into the next
"maintenance release", i.e., update of the last released
stable version;
• master tracks the commits that should go into the next
release;
• next is intended as a testing branch for topics being tested
for stability for master.
There is a fourth official branch that is used slightly
differently:
• seen (patches seen by the maintainer) is an integration branch
for things that are not quite ready for inclusion yet (see
"Integration Branches" below).
Each of the four branches is usually a direct descendant of the
one above it.
Conceptually, the feature enters at an unstable branch (usually
next or seen), and "graduates" to master for the next release once
it is considered stable enough.
Merging upwards
The "downwards graduation" discussed above cannot be done by
actually merging downwards, however, since that would merge all
changes on the unstable branch into the stable one. Hence the
following:
Example 1. Merge upwards
Always commit your fixes to the oldest supported branch that
requires them. Then (periodically) merge the integration branches
upwards into each other.
This gives a very controlled flow of fixes. If you notice that you
have applied a fix to e.g. master that is also required in maint,
you will need to cherry-pick it (using git-cherry-pick(1))
downwards. This will happen a few times and is nothing to worry
about unless you do it very frequently.
Topic branches
Any nontrivial feature will require several patches to implement,
and may get extra bugfixes or improvements during its lifetime.
Committing everything directly on the integration branches leads
to many problems: Bad commits cannot be undone, so they must be
reverted one by one, which creates confusing histories and further
error potential when you forget to revert part of a group of
changes. Working in parallel mixes up the changes, creating
further confusion.
Use of "topic branches" solves these problems. The name is pretty
self explanatory, with a caveat that comes from the "merge
upwards" rule above:
Example 2. Topic branches
Make a side branch for every topic (feature, bugfix, ...). Fork it
off at the oldest integration branch that you will eventually want
to merge it into.
Many things can then be done very naturally:
• To get the feature/bugfix into an integration branch, simply
merge it. If the topic has evolved further in the meantime,
merge again. (Note that you do not necessarily have to merge
it to the oldest integration branch first. For example, you
can first merge a bugfix to next, give it some testing time,
and merge to maint when you know it is stable.)
• If you find you need new features from the branch other to
continue working on your topic, merge other to topic.
(However, do not do this "just habitually", see below.)
• If you find you forked off the wrong branch and want to move
it "back in time", use git-rebase(1).
Note that the last point clashes with the other two: a topic that
has been merged elsewhere should not be rebased. See the section
on RECOVERING FROM UPSTREAM REBASE in git-rebase(1).
We should point out that "habitually" (regularly for no real
reason) merging an integration branch into your topics — and by
extension, merging anything upstream into anything downstream on a
regular basis — is frowned upon:
Example 3. Merge to downstream only at well-defined points
Do not merge to downstream except with a good reason: upstream API
changes affect your branch; your branch no longer merges to
upstream cleanly; etc.
Otherwise, the topic that was merged to suddenly contains more
than a single (well-separated) change. The many resulting small
merges will greatly clutter up history. Anyone who later
investigates the history of a file will have to find out whether
that merge affected the topic in development. An upstream might
even inadvertently be merged into a "more stable" branch. And so
on.
Throw-away integration
If you followed the last paragraph, you will now have many small
topic branches, and occasionally wonder how they interact. Perhaps
the result of merging them does not even work? But on the other
hand, we want to avoid merging them anywhere "stable" because such
merges cannot easily be undone.
The solution, of course, is to make a merge that we can undo:
merge into a throw-away branch.
Example 4. Throw-away integration branches
To test the interaction of several topics, merge them into a
throw-away branch. You must never base any work on such a branch!
If you make it (very) clear that this branch is going to be
deleted right after the testing, you can even publish this branch,
for example to give the testers a chance to work with it, or other
developers a chance to see if their in-progress work will be
compatible. git.git has such an official throw-away integration
branch called seen.
Branch management for a release
Assuming you are using the merge approach discussed above, when
you are releasing your project you will need to do some additional
branch management work.
A feature release is created from the master branch, since master
tracks the commits that should go into the next feature release.
The master branch is supposed to be a superset of maint. If this
condition does not hold, then maint contains some commits that are
not included on master. The fixes represented by those commits
will therefore not be included in your feature release.
To verify that master is indeed a superset of maint, use git log:
Example 5. Verify master is a superset of maint
git log master..maint
This command should not list any commits. Otherwise, check out
master and merge maint into it.
Now you can proceed with the creation of the feature release.
Apply a tag to the tip of master indicating the release version:
Example 6. Release tagging
git tag -s -m "Git X.Y.Z" vX.Y.Z master
You need to push the new tag to a public Git server (see
"DISTRIBUTED WORKFLOWS" below). This makes the tag available to
others tracking your project. The push could also trigger a
post-update hook to perform release-related items such as building
release tarballs and preformatted documentation pages.
Similarly, for a maintenance release, maint is tracking the
commits to be released. Therefore, in the steps above simply tag
and push maint rather than master.
Maintenance branch management after a feature release
After a feature release, you need to manage your maintenance
branches.
First, if you wish to continue to release maintenance fixes for
the feature release made before the recent one, then you must
create another branch to track commits for that previous release.
To do this, the current maintenance branch is copied to another
branch named with the previous release version number (e.g.
maint-X.Y.(Z-1) where X.Y.Z is the current release).
Example 7. Copy maint
git branch maint-X.Y.(Z-1) maint
The maint branch should now be fast-forwarded to the newly
released code so that maintenance fixes can be tracked for the
current release:
Example 8. Update maint to new release
• git checkout maint
• git merge --ff-only master
If the merge fails because it is not a fast-forward, then it is
possible some fixes on maint were missed in the feature release.
This will not happen if the content of the branches was verified
as described in the previous section.
Branch management for next and seen after a feature release
After a feature release, the integration branch next may
optionally be rewound and rebuilt from the tip of master using the
surviving topics on next:
Example 9. Rewind and rebuild next
• git switch -C next master
• git merge ai/topic_in_next1
• git merge ai/topic_in_next2
• ...
The advantage of doing this is that the history of next will be
clean. For example, some topics merged into next may have
initially looked promising, but were later found to be undesirable
or premature. In such a case, the topic is reverted out of next
but the fact remains in the history that it was once merged and
reverted. By recreating next, you give another incarnation of such
topics a clean slate to retry, and a feature release is a good
point in history to do so.
If you do this, then you should make a public announcement
indicating that next was rewound and rebuilt.
The same rewind and rebuild process may be followed for seen. A
public announcement is not necessary since seen is a throw-away
branch, as described above.
After the last section, you should know how to manage topics. In
general, you will not be the only person working on the project,
so you will have to share your work.
Roughly speaking, there are two important workflows: merge and
patch. The important difference is that the merge workflow can
propagate full history, including merges, while patches cannot.
Both workflows can be used in parallel: in git.git, only subsystem
maintainers use the merge workflow, while everyone else sends
patches.
Note that the maintainer(s) may impose restrictions, such as
"Signed-off-by" requirements, that all commits/patches submitted
for inclusion must adhere to. Consult your project’s documentation
for more information.
Merge workflow
The merge workflow works by copying branches between upstream and
downstream. Upstream can merge contributions into the official
history; downstream base their work on the official history.
There are three main tools that can be used for this:
• git-push(1) copies your branches to a remote repository,
usually to one that can be read by all involved parties;
• git-fetch(1) that copies remote branches to your repository;
and
• git-pull(1) that does fetch and merge in one go.
Note the last point. Do not use git pull unless you actually want
to merge the remote branch.
Getting changes out is easy:
Example 10. Push/pull: Publishing branches/topics
git push <remote> <branch> and tell everyone where they can fetch
from.
You will still have to tell people by other means, such as mail.
(Git provides the git-request-pull(1) to send preformatted pull
requests to upstream maintainers to simplify this task.)
If you just want to get the newest copies of the integration
branches, staying up to date is easy too:
Example 11. Push/pull: Staying up to date
Use git fetch <remote> or git remote update to stay up to date.
Then simply fork your topic branches from the stable remotes as
explained earlier.
If you are a maintainer and would like to merge other people’s
topic branches to the integration branches, they will typically
send a request to do so by mail. Such a request looks like
Please pull from
<URL> <branch>
In that case, git pull can do the fetch and merge in one go, as
follows.
Example 12. Push/pull: Merging remote topics
git pull <URL> <branch>
Occasionally, the maintainer may get merge conflicts when they try
to pull changes from downstream. In this case, they can ask
downstream to do the merge and resolve the conflicts themselves
(perhaps they will know better how to resolve them). It is one of
the rare cases where downstream should merge from upstream.
Patch workflow
If you are a contributor that sends changes upstream in the form
of emails, you should use topic branches as usual (see above).
Then use git-format-patch(1) to generate the corresponding emails
(highly recommended over manually formatting them because it makes
the maintainer’s life easier).
Example 13. format-patch/am: Publishing branches/topics
• git format-patch -M upstream..topic to turn them into
preformatted patch files
• git send-email --to=<recipient> <patches>
See the git-format-patch(1) and git-send-email(1) manpages for
further usage notes.
If the maintainer tells you that your patch no longer applies to
the current upstream, you will have to rebase your topic (you
cannot use a merge because you cannot format-patch merges):
Example 14. format-patch/am: Keeping topics up to date
git pull --rebase <URL> <branch>
You can then fix the conflicts during the rebase. Presumably you
have not published your topic other than by mail, so rebasing it
is not a problem.
If you receive such a patch series (as maintainer, or perhaps as a
reader of the mailing list it was sent to), save the mails to
files, create a new topic branch and use git am to import the
commits:
Example 15. format-patch/am: Importing patches
git am < patch
One feature worth pointing out is the three-way merge, which can
help if you get conflicts: git am -3 will use index information
contained in patches to figure out the merge base. See git-am(1)
for other options.
gittutorial(7), git-push(1), git-pull(1), git-merge(1),
git-rebase(1), git-format-patch(1), git-send-email(1), git-am(1)
Part of the git(1) suite
This page is part of the git (Git distributed version control
system) project. Information about the project can be found at
⟨http://git-scm.com/⟩. If you have a bug report for this manual
page, see ⟨http://git-scm.com/community⟩. This page was obtained
from the project's upstream Git repository
⟨https://github.com/git/git.git⟩ on 2025-08-11. (At that time,
the date of the most recent commit that was found in the
repository was 2025-08-07.) If you discover any rendering
problems in this HTML version of the page, or you believe there is
a better or more up-to-date source for the page, or you have
corrections or improvements to the information in this COLOPHON
(which is not part of the original manual page), send a mail to
man-pages@man7.org
Git 2.51.0.rc1 2025-08-07 GITWORKFLOWS(7)
Pages that refer to this page: git(1), git-cherry(1), gittutorial(7)