threads/thread_lock_speed.cThis is threads/thread_lock_speed.c, an example to accompany the book, The Linux Programming Interface. This file is not printed in the book; it is a supplementary file for Chapter 33. The source code file is copyright 2025, Michael Kerrisk, and is licensed under the GNU General Public License, version 3. In the listing below, the names of Linux system calls and C library functions are hyperlinked to manual pages from the Linux man-pages project, and the names of functions implemented in the book are hyperlinked to the implementations of those functions.
|
/* thread_lock_speed.c This program employs POSIX threads that increment the same global variable, synchronizing their access using either a mutex or a spinlock. Command-line arguments allow the user to specify: * The number of threads that will increment the global variable. * The number of "outer loops" that each thread will execute using the lock/unlock APIs (either mutexes or spin locks). * The number "inner loops" executed for each "outer loop" step. Each inner loop iteration increments the global variable by 1. By default, the threads use mutexes to synchronize their access to the global variable. Specifying the "-s" option causes spin locks to be employed instead. The idea is to vary the number of threads and number of inner loops while using time(1) to measure the real and CPU time consumed by the program. In some scenarios (e.g., many threads, large "inner loop" values), mutexes will perform better, while in others (few threads, small "inner loop" value), spin locks are likely to be better. */ #include <pthread.h> #include <stdbool.h> #include "tlpi_hdr.h" static volatile int glob = 0; static pthread_spinlock_t splock; static pthread_mutex_t mtx; static bool useMutex; static int numOuterLoops; static int numInnerLoops;
static void * threadFunc(void *arg) { int s; for (int j = 0; j < numOuterLoops; j++) { if (useMutex) { s = pthread_mutex_lock(&mtx); if (s != 0) errExitEN(s, "pthread_mutex_lock"); } else { s = pthread_spin_lock(&splock); if (s != 0) errExitEN(s, "pthread_spin_lock"); } for (int k = 0; k < numInnerLoops; k++) glob++; if (useMutex) { s = pthread_mutex_unlock(&mtx); if (s != 0) errExitEN(s, "pthread_mutex_unlock"); } else { s = pthread_spin_unlock(&splock); if (s != 0) errExitEN(s, "pthread_spin_unlock"); } } return NULL; }
static void usageError(char *pname) { fprintf(stderr, "Usage: %s [-s] num-threads " "[num-inner-loops [num-outer-loops]]\n", pname); fprintf(stderr, " -q Don't print verbose messages\n"); fprintf(stderr, " -s Use spin locks (instead of the default mutexes)\n"); exit(EXIT_FAILURE); }
int main(int argc, char *argv[]) { /* Prevent runaway/forgotten process from burning up CPU time forever */ alarm(120); /* Unhandled SIGALRM will kill process */ useMutex = true; bool verbose = true; int opt; while ((opt = getopt(argc, argv, "qs")) != -1) { switch (opt) { case 'q': verbose = false; break; case 's': useMutex = false; break; default: usageError(argv[0]); } } if (optind >= argc) usageError(argv[0]); int numThreads = atoi(argv[optind]); numInnerLoops = (optind + 1 < argc) ? atoi(argv[optind + 1]) : 1; numOuterLoops = (optind + 2 < argc) ? atoi(argv[optind + 2]) : 10000000; if (verbose) { printf("Using %s\n", useMutex ? "mutexes" : "spin locks"); printf("\tthreads: %d; outer loops: %d; inner loops: %d\n", numThreads, numOuterLoops, numInnerLoops); } pthread_t *thread = calloc(numThreads, sizeof(pthread_t)); if (thread == NULL) errExit("calloc"); int s; if (useMutex) { s = pthread_mutex_init(&mtx, NULL); if (s != 0) errExitEN(s, "pthread_mutex_init"); } else { s = pthread_spin_init(&splock, 0); if (s != 0) errExitEN(s, "pthread_spin_init"); } for (int j = 0; j < numThreads; j++) { s = pthread_create(&thread[j], NULL, threadFunc, NULL); if (s != 0) errExitEN(s, "pthread_create"); } for (int j = 0; j < numThreads; j++) { s = pthread_join(thread[j], NULL); if (s != 0) errExitEN(s, "pthread_join"); } if (verbose) printf("glob = %d\n", glob); exit(EXIT_SUCCESS); }
Note that, in most cases, the programs rendered in these web pages are not free standing: you'll typically also need a few other source files (mostly in the lib/ subdirectory) as well. Generally, it's easier to just download the entire source tarball and build the programs with make(1). By hovering your mouse over the various hyperlinked include files and function calls above, you can see which other source files this file depends on.