NAME | LIBRARY | SYNOPSIS | DESCRIPTION | ATTRIBUTES | STANDARDS | HISTORY | SEE ALSO | COLOPHON |
|
|
cproj(3) Library Functions Manual cproj(3)
cproj, cprojf, cprojl - project into Riemann Sphere
Math library (libm, -lm)
#include <complex.h> double complex cproj(double complex z); float complex cprojf(float complex z); long double complex cprojl(long double complex z);
These functions project a point in the plane onto the surface of a Riemann Sphere, the one-point compactification of the complex plane. Each finite point z projects to z itself. Every complex infinite value is projected to a single infinite value, namely to positive infinity on the real axis.
For an explanation of the terms used in this section, see attributes(7). ┌─────────────────────────────────────┬───────────────┬─────────┐ │ Interface │ Attribute │ Value │ ├─────────────────────────────────────┼───────────────┼─────────┤ │ cproj(), cprojf(), cprojl() │ Thread safety │ MT-Safe │ └─────────────────────────────────────┴───────────────┴─────────┘
C11, POSIX.1-2008.
glibc 2.1. C99, POSIX.1-2001. In glibc 2.11 and earlier, the implementation does something different (a stereographic projection onto a Riemann Sphere).
cabs(3), complex(7)
This page is part of the man-pages (Linux kernel and C library
user-space interface documentation) project. Information about
the project can be found at
⟨https://www.kernel.org/doc/man-pages/⟩. If you have a bug report
for this manual page, see
⟨https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/tree/CONTRIBUTING⟩.
This page was obtained from the tarball man-pages-6.9.1.tar.gz
fetched from
⟨https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/⟩ on
2024-06-26. If you discover any rendering problems in this HTML
version of the page, or you believe there is a better or more up-
to-date source for the page, or you have corrections or
improvements to the information in this COLOPHON (which is not
part of the original manual page), send a mail to
man-pages@man7.org
Linux man-pages 6.9.1 2024-05-02 cproj(3)
Pages that refer to this page: complex(7)