PROLOG | NAME | SYNOPSIS | DESCRIPTION | RETURN VALUE | ERRORS | EXAMPLES | APPLICATION USAGE | RATIONALE | FUTURE DIRECTIONS | SEE ALSO | COPYRIGHT

Y0(3P)                    POSIX Programmer's Manual                   Y0(3P)

PROLOG         top

       This manual page is part of the POSIX Programmer's Manual.  The Linux
       implementation of this interface may differ (consult the
       corresponding Linux manual page for details of Linux behavior), or
       the interface may not be implemented on Linux.

NAME         top

       y0, y1, yn — Bessel functions of the second kind

SYNOPSIS         top

       #include <math.h>

       double y0(double x);
       double y1(double x);
       double yn(int n, double x);

DESCRIPTION         top

       The y0(), y1(), and yn() functions shall compute Bessel functions of
       x of the second kind of orders 0, 1, and n, respectively.

       An application wishing to check for error situations should set errno
       to zero and call feclearexcept(FE_ALL_EXCEPT) before calling these
       functions. On return, if errno is non-zero or fetestexcept(FE_INVALID
       | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error
       has occurred.

RETURN VALUE         top

       Upon successful completion, these functions shall return the relevant
       Bessel value of x of the second kind.

       If x is NaN, NaN shall be returned.

       If the x argument to these functions is negative, −HUGE_VAL or NaN
       shall be returned, and a domain error may occur.

       If x is 0.0, −HUGE_VAL shall be returned and a pole error may occur.

       If the correct result would cause underflow, 0.0 shall be returned
       and a range error may occur.

       If the correct result would cause overflow, −HUGE_VAL or 0.0 shall be
       returned and a range error may occur.

ERRORS         top

       These functions may fail if:

       Domain Error
                   The value of x is negative.

                   If the integer expression (math_errhandling & MATH_ERRNO)
                   is non-zero, then errno shall be set to [EDOM].  If the
                   integer expression (math_errhandling & MATH_ERREXCEPT) is
                   non-zero, then the invalid floating-point exception shall
                   be raised.

       Pole Error  The value of x is zero.

                   If the integer expression (math_errhandling & MATH_ERRNO)
                   is non-zero, then errno shall be set to [ERANGE].  If the
                   integer expression (math_errhandling & MATH_ERREXCEPT) is
                   non-zero, then the divide-by-zero floating-point
                   exception shall be raised.

       Range Error The correct result would cause overflow.

                   If the integer expression (math_errhandling & MATH_ERRNO)
                   is non-zero, then errno shall be set to [ERANGE].  If the
                   integer expression (math_errhandling & MATH_ERREXCEPT) is
                   non-zero, then the overflow floating-point exception
                   shall be raised.

       Range Error The value of x is too large in magnitude, or the correct
                   result would cause underflow.

                   If the integer expression (math_errhandling & MATH_ERRNO)
                   is non-zero, then errno shall be set to [ERANGE].  If the
                   integer expression (math_errhandling & MATH_ERREXCEPT) is
                   non-zero, then the underflow floating-point exception
                   shall be raised.

       The following sections are informative.

EXAMPLES         top

       None.

APPLICATION USAGE         top

       On error, the expressions (math_errhandling & MATH_ERRNO) and
       (math_errhandling & MATH_ERREXCEPT) are independent of each other,
       but at least one of them must be non-zero.

RATIONALE         top

       None.

FUTURE DIRECTIONS         top

       None.

SEE ALSO         top

       feclearexcept(3p), fetestexcept(3p), isnan(3p), j0(3p)

       The Base Definitions volume of POSIX.1‐2008, Section 4.19, Treatment
       of Error Conditions for Mathematical Functions, math.h(0p)

COPYRIGHT         top

       Portions of this text are reprinted and reproduced in electronic form
       from IEEE Std 1003.1, 2013 Edition, Standard for Information
       Technology -- Portable Operating System Interface (POSIX), The Open
       Group Base Specifications Issue 7, Copyright (C) 2013 by the
       Institute of Electrical and Electronics Engineers, Inc and The Open
       Group.  (This is POSIX.1-2008 with the 2013 Technical Corrigendum 1
       applied.) In the event of any discrepancy between this version and
       the original IEEE and The Open Group Standard, the original IEEE and
       The Open Group Standard is the referee document. The original
       Standard can be obtained online at http://www.unix.org/online.html .

       Any typographical or formatting errors that appear in this page are
       most likely to have been introduced during the conversion of the
       source files to man page format. To report such errors, see
       https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group                 2013                              Y0(3P)

Pages that refer to this page: math.h(0p)j0(3p)