
man7.org
Training and Consulting

Linux System Programming Fundamentals

NDC TechTown Workshop, 29-30 August 2022

http://man7.org/training/spintro_ndc/

This two-day workshop provides a solid understanding of the operating system
architecture and low-level interfaces (principally, system calls and library func-
tions) that are used to build system-level applications on Linux (and UNIX)
systems ranging from embedded processors to enterprise servers. By completion
of the workshop, participants will have a good understanding of the construction
of many common Linux and UNIX programs (e.g., the shell, ls(1), and cp(1)).

Audience and prerequisites
The audience for this workshop includes programmers de-
veloping and porting system-level applications for Linux and
UNIX systems, embedded application developers, security
engineers, site reliability engineers, and DevOps engineers.

To get the most out of the workshop, participants should
have:

• Good reading knowledge of the C programming language
• Solid programming experience in a language suitable for

completing the practical exercises (e.g., C, C++, D, or
Rust)

• A familiarity with basic UNIX/Linux shell commands will
be helpful

Previous system programming experience is not required.

Workshop duration and format
Two days, with up to 40% devoted to practical sessions.

Computer set-up
You’ll need a laptop with Linux installed–either as a native
install or inside a virtual machine (VM). In the latter case,
you should ensure that the VM has working Internet access.
The system should have a C compiler (e.g., gcc) and "make"
installed. (It’s likely that both of these are provided as part
of the default install, if you are setting up a new system.)

Workshop materials
• A course book (written by the trainer) that includes all

slides and exercises presented in the workshop
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• A source code tarball containing around 30,000 lines of

example code written by the trainer

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2024-12-28 #8b72ed61) Page 1

http://man7.org/training/


Linux System Programming Fundamentals: workshop contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

1. Course Introduction
2. Fundamental Concepts

• System calls and library
functions

• Error handling
• System data types
• Notes on code examples

3. File I/O and Files
• File I/O overview
• open(), read(), write(), close()
• The file offset and lseek()
• Relationship between file

descriptors and open files
• Duplicating file descriptors
• File status flags (and fcntl())
• Retrieving file info: stat()

4. Processes
• Process IDs
• Process memory layout
• Command-line arguments
• The environment list
• Process credentials

• The /proc filesystem

5. Signals

• Overview of signals
• Signal dispositions
• Signal handlers
• Useful signal-related functions
• Signal sets, the signal mask,

and pending signals
• Designing signal handlers

6. Signals: Signal Handlers

• Async-signal-safe functions
• Interrupted system calls
• SA_SIGINFO handlers (*)
• The signal trampoline (*)

7. Process Lifecycle

• Creating a new process: fork()
• Process termination
• Monitoring child processes
• Orphans and zombies
• The SIGCHLD signal
• Executing programs: execve()

8. System Call Tracing (*)

• strace basics
• Tracing child processes
• Filtering strace output

9. Pipes and FIFOs

• Creating and using pipes
• FIFOs (*)
• Connecting filters (*)

10. Alternative I/O Models

• Nonblocking I/O
• Signal-driven I/O
• I/O multiplexing: poll()
• Event-loop programming (*)

11. Alternative I/O Models: epoll

• Problems with poll() and
select()

• The epoll API
• epoll events
• Performance considerations
• Edge-triggered notification (*)

The following are a few of the other courses taught by Michael Kerrisk. Custom courses are also available upon request.
Further details on these and other courses can be found at http://man7.org/training/. For course inquiries please email
training@man7.org or phone +49 (89) 2155 2990 (German landline).

Linux Security and Isolation APIs
Course code: M7D-SECISOL02 (4 days)

Covering topics including control cgroups (cgroups), names-
paces (with a deep dive into user namespaces), capabilities,
and seccomp (secure computing), this course provides a deep
understanding of the low-level Linux features used to design,
build, and troubleshoot container, virtualization, and sand-
boxing frameworks.

Linux/UNIX Network Programming
Course code: M7D-NWP03 (3 days)

This course covers sockets programming (both UNIX and
Internet domain sockets), and the use of relevant I/O tech-
niques for working with sockets (poll(), epoll, nonblocking
I/O). In addition, we look at the TCP/IP protocol stack (in-
cluding details of TCP such as the 3-way handshake and the
TCP state machine), the use of monitoring and tracing tools
(ss, netstat, and tcpdump/wireshark), and raw sockets.

Linux/UNIX System Programming
Course code: M7D-LUSP01 (5 days)

This course covers the APIs used to build system-level appli-
cations on Linux and UNIX systems ranging from embedded
processors to enterprise servers. The presentations and prac-
tical exercises provide participants with the knowledge needed
to write complex system, network, and multithreaded applica-
tions. Topics include: file I/O; signals; process creation and
termination; program execution; POSIX threads; interprocess
communication, and I/O multiplexing (poll(), epoll).

Building and Using Shared Libraries on Linux
Course code: M7D-SHLIB04 (2.5 days)

This course describes how to design, build, and use shared
libraries on Linux. Topics include: fundamentals of library
creation and use; shared library versioning; symbol resolution;
library search order; executable and linking format (ELF); dy-
namically loaded libraries; controlling symbol visibility; and
symbol versioning.

http://man7.org/training/ k training@man7.org (v2024-12-28 #8b72ed61) Page 2

http://man7.org/training/
http://man7.org/training/

	Audience and prerequisites
	Workshop duration and format
	Computer set-up
	Workshop materials
	toAbout the trainer

