System Programming for Linux Containers

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline
16 User Namespaces and Capabilities 16-1
16.1 User namespaces and capabilities 16-3
16.2 What does it mean to be superuser in a namespace? 16-21
16.3 User namespace “set-UID-root” programs 16-31
16.4 Namespaced file capabilities 16-35

16.5 Namespaced file capabilities example 16-43

Outline

16 User Namespaces and Capabilities 16-1
16.1 User namespaces and capabilities 16-3

What are the rules that determine
the capabilities that a process
has in a given user namespace?

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-4 §16.1

User namespace hierarchies

@ User NSs exist in a hierarchy

e Each user NS has a parent, going back to initial user NS

@ Parental relationship is established when user NS is created:
o clone(): parent of new user NS is NS of caller of clone()

o unshare(): parent of new user NS is caller’s previous NS

@ Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-5 §16.1

User namespaces and capabilities

@ Whether a process has an effective capability inside a
“target” user NS depends on several factors:

e Whether the capability is present in the process’s effective
set

e Which user NS the process is a member of
e The process's effective UID

o The effective UID of the process that created the target
user NS

e The parental relationship between the process's user NS
and the target user NS

@ See also namespaces/ns_capable.c

o (A program that encapsulates the rules described next)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-6 §16.1

Capability rules for user namespaces

©Q A process has a capability in a user NS if:
e it is a member of the user NS, and

o capability is present in its effective set
e Note: this rule doesn’t grant that capability in parent NS

@ A process that has a capability in a user NS has the
capability in all descendant user NSs as well

o l.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

@ (All) processes in parent user NS that have same eUID as
eUID of creator of user NS have all capabilities in the NS

o At creation time, kernel records eUID of creator as
“owner” of user NS

e Can discover via ioctl(fd, NS_GET_OWNER_UID)

e By virtue of previous rule, capabilities also propagate into
all descendant user NSs

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-7 §16.1

Demonstration of capability rules

Set up following scenario; then both userns setns test
processes will try to join Child namespace 1 using setns()

(N

@ I.Da'r(?nt namespace bash
(initial namespace)

v v
Cuserns_child_exec) [userns_setns_test}

(parent)
I

J

) . /\ v i
] userns_sems_test
(child)

Child namespace 1 /

-

Child namespace 2
fork()

User > User namespace
clone() oo h'=

______ —» arental relationsni
namespace } -/ ONE_NEWUSER P

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-8 §16.1

namespaces/userns_setns test.c

./userns_setns_test /proc/PID/ns/user

@ Creates a child in a new user NS

@ Both processes then call setns() to attempt to join user
namespace identified by argument

o setns() requires CAP_SYS_ADMIN capability in target NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-9 §16.1

namespaces/userns_setns test.c

int main(int argc, char *argv[]) {

fd = open(argv[1], O_RDONLY);

child_pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, (void x*) fd);

test_setns ("parent: ", fd);

printf ("\n");

waitpid(child_pid, NULL, 0);
exit (EXIT_SUCCESS);

@ Open /proc/PID/ns/user file specified on command line

@ Create child in new user NS
o childFunc() receives file descriptor as argument

@ Try to join user NS referred to by fd (test_setns())

@ Wait for child to terminate

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-10 §16.1

namespaces/userns_setns test.c

static int childFunc(void *arg) {
long fd = (long) arg;

usleep (100000) ;
test_setns("child: ", fd);
return O;

@ Child sleeps briefly, to allow parent’s output to appear first

@ Child attempts to join user NS referred to by fd

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities

16-11 §16.1

namespaces/userns_setns test.c

static void display_symlink (char *pname, char *1link) {
char target [PATH_MAX];
ssize_t s = readlink(link, target, PATH_MAX);

}

static void test_setns (char *pname, int fd) {
display_symlink (pname, "/proc/self/ns/user");
if (setns(fd, CLONE_NEWUSER) == -1)
printf ("%s setns() failed: %s\n", pname,
strerror (errno)) ;
else {
printf ("%s setns() succeeded\n", pname);
display_symlink (pname, "/proc/self/ns/user");
display_creds_and_caps (pname);

printf ("%s%s ==> %*s\n", pname, link, (int) s, target);

@ Fetch and display caller's user NS symlink
o Try to setns() into user NS referred to by fd

@ On success, display user NS symlink, credentials, capabilities

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities

16-12 §16.1

namespaces/userns_functions.c

static void display_creds_and_caps (char *msg) {
cap_t caps;
char *s;
printf ("%seUID = J1ld; eGID = %1d; ", msg,

(long) geteuid (), (long) getegid());

caps = cap_get_proc();
s = cap_to_text(caps, NULL)
10 printf ("capabilities: %s\n", s);

OO NOUTPdWN -

12 cap_free(caps);
13 cap_free(s);

@ Display caller’'s credentials and capabilities
o (Different source file)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-13 §16.1

namespaces/userns_setns test.c

In one terminal window (in initial user NS), we run the following

commands:
$ id -u
1000

$ readlink /proc/$$/ns/user
user :[40265318371]
$ PS1=’sh2# ’ ./userns_child_exec \
-U -M ’0 1000 1’ -G ’0 1000 1’ bash
sh2# echo $$
30623
sh2# id -u
0
sh2# readlink /proc/$$/ns/user
user:[4026532638]

@ Show UID and user NS for initial shell

@ Start a new shell in a new user NS
e Show PID of new shell

e Show UID and user NS of new shell

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-14 §16.1

namespaces/userns_setns test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==>
user :[40265318371]
parent: setns () succeeded
parent: eUID = 0; eGID = 0; <capabilities: =ep

child: 1readlink("/proc/self/ns/user") ==>
user:[4026532639]
child: setns() failed: Operation not permitted

In a second terminal window, we run our setns() test program:
@ Results of readlink() calls show:

e Parent userns_setns_test process is in initial user NS

o Child userns_setns_test is in another user NS

@ setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-15 §16.1

namespaces/userns_setns test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==>
user : [4026531837]
parent: setns () succeeded
parent: eUID = 0; eGID = 0; <capabilities: =ep

child: 1readlink("/proc/self/ns/user") ==
user : [4026532639]
child: setns() failed: Operation not permitted

\4

@ setns() in child failed:

e Rule 3: “processes in parent user NS that have same
eUID as creator of user NS have all capabilities in the NS”

e Parent userns_setns_test process was in parent user
NS of target user NS and so had CAP_SYS_ADMIN

o Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-16 §16.1

Quiz (who can signal a process in a child user NS?7)

Initial user NS

Process B Process A Process X
UID = 1001 UID = 1000 UID=0
"Is user NS

parent of"

v creator UID = 1000

Child user NS
uid_map: 5 1000 10

Process C Process D
UID=5 UID=6

Sending a signal requires UID match or CAP_KILL capability

Assume A and B have no capabilities in initial user NS
Assume C was first process in child NS and has all capabilities in NS
To which of B, C, D can process A send a signal?

Can process B send a signal to process D?

® 6 6 6 o o

Can process X send a signal to processes C and D7

Can process C send a signal to A? To B? To D?

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-17 §16.1

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B Process A Process X
UID=1001 | | UID = 1000 UID =0
"Is user NS
—_

parent of"

§ creator UID = 1000

Child user NS
uid_map: 5 1000 10

Process C Process D
UID =5 UID=6

@ A can't signal B, but can signal C (matching credentials) and D
(because A has capabilities in D's namespace)

@ B can signal D (matching credentials)
@ X can signal C and D (because it has capabilities in parent user NS)
@ C can signal A (credential match), but not B

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-18 §16.1

Exercises

@ As an unprivileged user, start two sleep processes, one as the
unprivileged user and the other as UID 0:

$ id -u

1000

$ sleep 1000 &

$ sudo sleep 2000

As superuser, create a user namespace with root mappings and run a
shell in that namespace:

$ PS1="ns2# " sudo unshare -U -r bash --norc

Verify that the shell has a full set of capabilities and a UID map
“0 0 1":

ns2# egrep ’Cap(Prm|Eff)’ /proc/$$/status
ns2# cat /proc/$$/uid_map

[Exercises continue on next slide]

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-19 §16.1

Exercises

From this shell, try to kill each of the sleep processes started above:

ns2# ps -o ’pid uid cmd’ -C sleep # Discover ’sleep’ PIDs

ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

@ Write a program to set up two processes in a child user namespace as
in the scenario shown in the previous “Quiz" slide
[template: namespaces/ex.userns_cap_sig_expt.c]

e After compiling the program, assign capabilities to the executable
as follows:

sudo setcap cap_setuid,cap_setgid=pe \
<program-file>

e While running the program, try sending signals to processes “C"
and “D"” from a shell in the initial user namespace, in order to
verify the answers given for the Quiz.

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-20 §16.1

Outline

16 User Namespaces and Capabilities 16-1

16.2 What does it mean to be superuser in a namespace? 16-21

User namespaces and capabilities

@ Kernel grants initial process in new user NS a full set of
capabilities

@ But, those capabilities are available only for operations on
objects governed by the new user NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-22 §16.2

User namespaces and capabilities

@ Kernel associates each non-user NS instance with a
specific user NS instance

o When creating new network NS (for example), kernel
associates user NS of creating process with new network NS

@ Suppose a process operates on global resources governed by
new NS:

e Permission checks are done according to that process’s
capabilities in user NS that kernel recorded for new NS

@ = User NSs can safely deliver full capabilities inside a NS
without allowing users to damage wider system

o (Barring kernel bugs)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-23 §16.2

User namespaces and capabilities—an example

Initial user namespace
creator eUID: 0

[}
is owned b <
Y N
avoy Child user namespace Initial UTS Initial network
is OWn® creator eUID: 1000 namespace namespace

Second UTS L3 e
,1s member of %
namespace N
I - /‘06‘

< s Process X o
e Q&‘

-
=

Ibge} ~ eUID inside NS: 0 o
eUID in outer NS: 1000
capabilities: =ep

@ Example scenario; X was created with: unshare -Ur -u <prog>

e Xisin a new user NS, created with root mappings
e Xisin a new UTS NS, which is owned by new user NS
e X is in initial instance of all other NS types (e.g., network NS)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-24 §16.2

User namespaces and capabilities—an example

v .
Initial user namespace

creator eUID: 0
i

is owned by

av Child user namespace) Initial UTS Initial network
is OWDC creator eUID: 1000 | namespace namespace
S d UTS e
eeon Tis member of %
namespace . o o

1;;50\2 \ILS Process X) {g&eﬂ“
be,a - eUID inside NS: 0 oo
“"| eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to change host name (CAP_SYS_ADMIN)
@ Xisin second UTS NS

@ Permissions checked according to X's capabilities in user NS that owns
that UTS NS = succeeds (X has capabilities in user NS)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-25 §16.2

User namespaces and capabilities—an example

Initial user namespace
creator eUID: 0

[}
is owned b <
Y 4
avoy Child user namespace Initial UTS Initial network
is OWn® creator eUID: 1000 namespace namespace
S d UTS -
eeon Tis member of %
namespace . s o

%% s Process X) {;@eﬂ“
be,a - eUID inside NS: 0 oo
| eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to bind to reserved socket port (CAP_NET_BIND_SERVICE)
@ X is in initial network NS

@ Permissions checked according to X's capabilities in user NS that owns
network NS = attempt fails (no capabilities in initial user NS)

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-26 §16.2

Discovering namespace relationships

@ Recall that there are various ioctl() operations that can be
used to discover namespace relationships and other info

o NS_GET_USERNS: get user NS that owns a nonuser NS
o NS_GET_PARENT: get parent NS (for PID and user NSs)
e NS_GET_OWNER_UID: get UID of creator of a user NS

e NS_GET_NSTYPE: get NS type (CLONE_NEW*)

o Details in joctl_ns(2)

@ These operations can be used to build visualization tools for
namespaces and their relationships
e An example: namespaces/namespaces_of.go

@ Scans /proc/PID/ns/* symlinks and uses above joctl()
operations to discover namespace relationships

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-27 §16.2

Discovering namespace relationships

@ Commands to replicate scenario shown in earlier diagram:

$ echo $$ # PID of a shell in initial wuser NS
327

$ unshare -Ur -u sh # Create new user and UTS NSs

echo $$ # PID of shell in new NSs

353

@ We can inspect using namespaces/namespaces_of.go

e Shows namespace memberships of specified processes, in
context of user NS hierarchy

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-28 §16.2

Discovering namespace relationships

@ Inspect with namespaces/namespaces_of.go program:

$ go run namespaces_of.go --namespaces=net,uts 327 353
user {3 4026531837} <UID: 0>

[327]
net {3 4026532008}
[327 353]
uts {3 4026531838}
[327]
user {3 4026532760} <UID: 1000>
[353]
uts {3 4026532761}
[353]

e Shells are in same network NS, but different UTS NSs
e Second UTS NS is owned by second user NS

o NS IDs includes device ID (3) from underlying (hidden) NS
filesystem

o As described in ioct|_ns(2), it is the combination of device
ID 4 inode number that uniquely identifies a NS

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-29 §16.2

What about resources not governed by namespaces?

@ Some privileged operations relate to resources/features not
(yet) governed by any namespace

o E.g., change system time, load kernel modules, raise
process nice values

@ Having all capabilities in a (noninitial) user NS doesn't grant
power to perform operations on features not currently
governed by any NS

o E.g., can’t change system time, load/unload kernel
modules, raise process nice values

System Programming for Linux Containers ©2020, Michael Kerrisk User Namespaces and Capabilities 16-30 §16.2

