
System Programming for Linux Containers

Seccomp

Michael Kerrisk, man7.org © 2024

January 2024

mtk@man7.org

Outline Rev: # 352f8477c6e1

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

What is seccomp?

Kernel provides large number of system calls

≈400 system calls

Each system call is a vector for attack against kernel

Most programs use only small subset of available system
calls

Remaining systems calls should never legitimately occur

If they do occur, perhaps it is because program has been
compromised

Seccomp (“secure computing”) = mechanism to restrict
system calls that a process may make

Reduces attack surface of kernel

A key component for building application sandboxes

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-4 §20.1

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

History

First version in Linux 2.6.12 (2005)
Filtering enabled via /proc/PID/seccomp

Writing “1” to file places process (irreversibly) in “strict”
seccomp mode

Need CONFIG_SECCOMP

Strict mode: only permitted system calls are read(),
write(), _exit(), and sigreturn()

Note: open() not included (must open files before entering
strict mode)

sigreturn() allows for signal handlers

Other system calls ⇒ thread is killed with SIGKILL

Designed to sandbox compute-bound programs that deal
with untrusted byte code

Code perhaps exchanged via pre-created pipe or socket

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-6 §20.2

History

Linux 2.6.23 (2007):

/proc/PID/seccomp interface replaced by prctl() operations

prctl(PR_SET_SECCOMP, arg) modifies caller’s seccomp
mode

SECCOMP_MODE_STRICT: limit syscalls as before

prctl(PR_GET_SECCOMP) returns seccomp mode:

0 ⇒ process is not in seccomp mode

Otherwise?

SIGKILL (!)

prctl() is not a permitted system call in “strict” mode

Who says kernel developers don’t have a sense of humor?

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-7 §20.2

History

Linux 3.5 (July 2012) adds “filter” mode (AKA “seccomp2”)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, ...)

Can control which system calls are permitted to
calling thread

Control based on system call number and argument values

Choice is controlled by user-defined filter–a BPF “program”

Berkeley Packet Filter (later)

Requires CONFIG_SECCOMP_FILTER

By now used in a range of tools

E.g., Chrome, Firefox, OpenSSH, vsftpd, systemd, Docker,
LXC, Flatpak, Firejail, strace

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-8 §20.2

History

Linux 3.8 (2013):

The joke is getting old...

New /proc/PID/status Seccomp field exposes process
seccomp mode (as a number)

0 // SECCOMP_MODE_DISABLED
1 // SECCOMP_MODE_STRICT
2 // SECCOMP_MODE_FILTER

Process can, without fear, read from this file to discover its
own seccomp mode

But, must have previously obtained a file descriptor...

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-9 §20.2

History

Linux 3.17 (2014):
seccomp() system call added

(Rather than further multiplexing of prctl())

seccomp(2) provides superset of prctl(2) functionality

Can synchronize all threads to same filter tree

Useful, e.g., if some threads created by start-up code before
application has a chance to install filter(s)

Linux 4.14 (2017):

Audit logging of seccomp actions

Interfaces to discover what seccomp features are supported
by kernel

Wider range of “actions” can be returned by BPF filters

Linux 5.0 (March 2019):

New action: notification to user-space process

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-10 §20.2

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

Seccomp filtering

Allows filtering based on system call number and argument
(register) values

Pointers can not be dereferenced

Because of time-of-check, time-of-use race conditions
Seccomp and deep argument inspection
https://lwn.net/Articles/822256/, June 2020

Landlock LSM, added in Linux 5.13 (2021), addresses this
restriction(?)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-12 §20.3

https://lwn.net/Articles/822256/

Seccomp filtering overview

Steps:
1 Construct filter program that specifies permitted system

calls

2 Process installs filter for itself using seccomp() or prctl()

3 Process executes code that should be filtered:

exec() new program, or

invoke function in dynamically loaded library (plug-in)

Once installed, every syscall made by process triggers
execution of filter

Installed filters can’t be removed

Filter == declaration that we don’t trust subsequently
executed code

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-13 §20.3

BPF byte code

Seccomp filters are expressed as BPF (Berkeley Packet
Filter) programs

BPF is a byte code which is interpreted by a virtual
machine (VM) implemented inside kernel

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-14 §20.3

BPF origins

BPF originally devised (in 1992) for tcpdump

Monitoring tool to display packets passing over network

http://www.tcpdump.org/papers/bpf-usenix93.pdf

Volume of network traffic is enormous ⇒ must filter for
packets of interest

BPF allows in-kernel selection of packets

Filtering based on fields in packet header

Filtering in kernel more efficient than filtering in user space

Unwanted packets are discarded early

Avoid expense of passing every packet over
kernel-user-space boundary

© Seccomp ⇒ generalize BPF model to filter on syscall info

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-15 §20.3

Generalizing BPF

BPF originally designed to work with network packet headers

Seccomp2 developers realized BPF could be generalized to
solve different problem: filtering of system calls

Same basic task: test-and-branch processing based on
content of a small set of memory locations

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-16 §20.3

http://www.tcpdump.org/papers/bpf-usenix93.pdf

BPF virtual machine

BPF defines a virtual machine (VM) that can be
implemented inside kernel

VM characteristics:
Simple instruction set

Small set of instructions

All instructions are same size (64 bits)

Implementation is simple and fast

Only branch-forward instructions
Programs are directed acyclic graphs (DAGs)

Kernel can verify validity/safety of programs
Program completion is guaranteed (DAGs)

Simple instruction set ⇒ can verify opcodes and arguments

Can detect dead code

Can verify that program completes via a “return” instruction

BPF filter programs are limited to 4096 instructions

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-17 §20.3

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

Key features of BPF virtual machine

Accumulator register (32-bit)

Data area (data to be operated on)

In seccomp context: data area describes system call

All instructions are 64 bits, with a fixed format

Expressed as a C structure:

struct sock_filter {
__u16 code; /* Filter code (opcode)*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Multiuse field (operand) */

};

See <linux/filter.h> and <linux/bpf_common.h>

No state is preserved between BPF program invocations

E.g., can’t intercept n’th syscall of a particular type

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-20 §20.4

BPF instruction set

Instruction set includes:

Load instructions (BPF_LD)

Store instructions (BPF_ST)

There is a “working memory” area where info can be stored
(not persistent)

Jump instructions (BPF_JMP)

Arithmetic/logic instructions (BPF_ALU)

BPF_ADD, BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD, BPF_NEG

BPF_OR, BPF_AND, BPF_XOR, BPF_LSH, BPF_RSH

Return instructions (BPF_RET)

Terminate filter processing

Report a status telling kernel what to do with syscall

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-21 §20.4

BPF jump instructions

Conditional and unconditional jump instructions provided

Conditional jump instructions consist of

Opcode specifying condition to be tested

Value to test against

Two jump targets

jt : target if condition is true

jf : target if condition is false

Conditional jump instructions:

BPF_JEQ: jump if equal

BPF_JGT: jump if greater

BPF_JGE: jump if greater or equal

BPF_JSET: bit-wise AND + jump if nonzero result

jf target ⇒ no need for BPF_{JNE,JLT,JLE,JCLEAR}

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-22 §20.4

BPF jump instructions

Targets are expressed as relative offsets in instruction list

0 == no jump (execute next instruction)

jt and jf are 8 bits ⇒ 255 maximum offset for conditional
jumps

Unconditional BPF_JA (“jump always”) uses k as offset,
allowing much larger jumps

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-23 §20.4

Seccomp BPF data area

Seccomp provides data describing syscall to filter program
Buffer is read-only

I.e., seccomp filter can’t change syscall or syscall arguments

Can be expressed as a C structure...

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-24 §20.4

Seccomp BPF data area

struct seccomp_data {
int nr; /* System call number (4 bytes) */
__u32 arch; /* AUDIT_ARCH_* value */
__u64 instruction_pointer; /* CPU IP */
__u64 args[6]; /* System call arguments */

};

nr : system call number (architecture-dependent); 4-byte int

arch : identifies architecture
Constants defined in <linux/audit.h>

AUDIT_ARCH_X86_64, AUDIT_ARCH_ARM, etc.

instruction_pointer : CPU instruction pointer

args : system call arguments

System calls have maximum of six arguments

Number of elements used depends on system call

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-25 §20.4

Building BPF instructions

One could code BPF instructions numerically by hand...

But, header files define convenience macros (and symbolic
constants) to ease the task:

#define BPF_STMT(code, k) \
{ (unsigned short)(code), 0, 0, k }

#define BPF_JUMP(code, k, jt, jf) \
{ (unsigned short)(code), jt, jf, k }

These macros just plug values together to form sock_filter
structure initializer

struct sock_filter {
__u16 code; /* Filter code (opcode)*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Multiuse field (operand) */

};

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-26 §20.4

Building BPF instructions: examples

Load architecture number into accumulator

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof(struct seccomp_data, arch))

Opcode here is constructed by ORing three values together:

BPF_LD: load

BPF_W: operand size is a word (4 bytes)

BPF_ABS: address mode specifying that source of load is
data area (containing system call data)

See <linux/bpf_common.h> for definitions of opcode
constants

Operand is architecture field of data area

offsetof() yields byte offset of a field in a structure

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-27 §20.4

Building BPF instructions: examples

Test value in accumulator

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 1, 0)

BPF_JMP | BPF_JEQ: jump with test on equality

BPF_K: value to test against is in generic multiuse field (k)

k contains value AUDIT_ARCH_X86_64

jt value is 1, meaning skip one instruction if test is true

jf value is 0, meaning skip zero instructions if test is false

I.e., continue execution at following instruction

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-28 §20.4

Building BPF instructions: examples

Return a value that causes kernel to kill process

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

Arithmetic/logic instruction: add one to accumulator

BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1)

Arithmetic/logic instruction: right shift accumulator 12 bits

BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 12)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-29 §20.4

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

Filter return value

Once filter is installed, every syscall is tested against filter

Seccomp filter must return a value to kernel indicating
whether syscall is permitted

Otherwise EINVAL when attempting to install filter

Return value is 32 bits, in two parts:
Most significant 16 bits specify an action to kernel

SECCOMP_RET_ACTION_FULL mask

Least significant 16 bits specify “data” for return value

SECCOMP_RET_DATA mask

#define SECCOMP_RET_ACTION_FULL 0xffff0000U
#define SECCOMP_RET_DATA 0x0000ffffU

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-32 §20.5

Filter return action (1)

Filter return action component is one of:

SECCOMP_RET_ALLOW: system call is allowed to execute

SECCOMP_RET_KILL_PROCESS (since Linux 4.14, 2017):
process (all threads) is immediately killed

Terminated as though process had been killed with SIGSYS

There is no actual SIGSYS signal delivered, but...

To parent (via wait()) it appears child was killed by SIGSYS

Core dump is also produced

SECCOMP_RET_KILL_THREAD (== SECCOMP_RET_KILL):
thread (i.e., task, not process) is immediately killed

Terminated as though thread had been killed with SIGSYS

If this is the only thread in process, a core dump is also
produced

SECCOMP_RET_KILL_THREAD alias was added in Linux 4.14

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-33 §20.5

Filter return action (2)

SECCOMP_RET_ERRNO: return an error from system call

System call is not executed

Value in SECCOMP_RET_DATA is returned in errno

But, capped to 4095

SECCOMP_RET_TRACE: attempt to notify ptrace() tracer
before making syscall

Gives tracing process a chance to assume control

If there is no tracer, syscall fails with ENOSYS error

strace(1) uses this to speed tracing (since 2018)

See seccomp(2)

SECCOMP_RET_TRAP: calling thread is sent SIGSYS signal

Can catch this signal; see seccomp(2) for more details

Example: seccomp/seccomp_trap_sigsys.c

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-34 §20.5

Filter return action (3)

SECCOMP_RET_LOG (since Linux 4.14): allow + log syscall
System call is allowed, and also logged to audit log

/var/log/audit/audit.log; ausearch(8)

Useful during filter development (later...)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-35 §20.5

Filter return action (4)

SECCOMP_RET_USER_NOTIF (since Linux 5.0, 2019): send
notification to user-space “supervisor” process

See seccomp(2), seccomp_unotify(2), and
seccomp/seccomp_unotify_mkdir.c,
seccomp/seccomp_unotify_openat.c

Added for some container use cases, but other uses are possible

Example container user case: mounting a block file system

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-36 §20.5

Filter return action (5)

SECCOMP_RET_USER_NOTIF (continued):

System call is not (yet) executed

Notified process (the “supervisor”):
Receives syscall info (same as BPF filter) + PID of filtered
process (the “target”)

Can use received info to (for example) inspect arguments of
target’s syscall (open("/proc/PID/mem") + lseek())

Can perform operation on behalf of “target” (i.e., target’s
syscall is not executed)

Sends response containing (fake) success/error return value
for target’s syscall

Can instead send “continue” response telling kernel to let
syscall proceed

" " can not safely be used to implement security policy
E.g., attacker could manipulate target’s memory after
supervisor says “continue”

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-37 §20.5

Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (libseccomp and other tools) 20-63
20.9 Applications and further information 20-73

Installing a BPF program

A process installs a filter for itself using one of:
seccomp(SECCOMP_SET_MODE_FILTER, flags, &fprog)

Since Linux 3.17 (2014)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,

&fprog)

&fprog is a pointer to a BPF program:

struct sock_fprog {
unsigned short len; /* Number of instructions */
struct sock_filter *filter; /* Pointer to program

(array of instructions) */
};

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-40 §20.6

Installing a BPF program

To install a filter, one of the following must be true:

Caller is privileged (has CAP_SYS_ADMIN in its user
namespace)

Caller has to set the no_new_privs process attribute:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

Causes set-UID/set-GID bit / file capabilities to be ignored
on subsequent execve() calls

Once set, no_new_privs can’t be unset

Per-thread attribute

Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

! no_new_privs && ! CAP_SYS_ADMIN ⇒

seccomp()/prctl(PR_SET_SECCOMP) fails with EACCES

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-41 §20.6

Example: seccomp/seccomp_deny_open.c

1 int main(int argc, char *argv[]) {
2 prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3
4 install_filter();
5
6 open("/tmp/a", O_RDONLY);
7
8 printf("We shouldn't see this message\n");
9 exit(EXIT_SUCCESS);

10 }

Program installs a filter that prevents open() and openat() being
called, and then calls open()

Set no_new_privs bit

Install seccomp filter

Call open()

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-42 §20.6

Example: seccomp/seccomp_deny_open.c

1 static void install_filter(void) {
2 struct sock_filter filter[] = {
3
4 /* Architecture-check code not shown */
5
6 BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
7 offsetof(struct seccomp_data, nr)),
8 ...

BPF filter program consists of a series of sock_filter structs

For now we ignore some BPF code that checks the
architecture that BPF program is executing on

" This is an essential part of every BPF filter program

Load system call number into accumulator

(BPF program continues on next slide)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-43 §20.6

Example: seccomp/seccomp_deny_open.c

1 #ifdef __NR_open /* Not all architectures have open() */
2 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_open, 2, 0),
3 #endif
4 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_openat, 1, 0),
5 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
6 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)
7 };

Test if system call number matches __NR_open

True: advance 2 instructions ⇒ kill process

False: advance 0 instructions ⇒ next test

(open() is absent on some architectures, because it can be
implemented using openat())

Test if system call number matches __NR_openat

True: advance 1 instruction ⇒ kill process

False: advance 0 instructions ⇒ allow syscall

(Note: creat() + open_by_handle_at() are still not filtered)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-44 §20.6

Example: seccomp/seccomp_deny_open.c

1 struct sock_fprog prog = {
2 .len = sizeof(filter) / sizeof(filter[0]),
3 .filter = filter,
4 };
5
6 seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog);
7 }

Construct argument for seccomp()

Install filter

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-45 §20.6

Example: seccomp/seccomp_deny_open.c

Upon running the program, we see:

$./seccomp_deny_open
Bad system call # Message printed by shell
$ echo $? # Display exit status of last command
159

“Bad system call” was printed by shell, because it looks like
its child was killed by SIGSYS

Exit status of 159 (== 128 + 31) also indicates termination
as though killed by SIGSYS

Exit status of process killed by signal is 128 + signum

SIGSYS is signal number 31 on this architecture

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-46 §20.6

Example: seccomp/seccomp_control_open.c

A more sophisticated example

Filter based on flags argument of open() / openat()

O_CREAT specified ⇒ kill process

O_WRONLY or O_RDWR specified ⇒ cause call to fail with
ENOTSUP error

flags is arg. 2 of open(), and arg. 3 of openat() :

int open(const char *pathname, int flags, ...);
int openat(int dirfd, const char *pathname, int flags, ...);

flags serves exactly the same purpose for both calls

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-47 §20.6

Example: seccomp/seccomp_control_open.c

struct sock_filter filter[] = {
/* Architecture-check code not shown */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof(struct seccomp_data, nr)),

...
#ifdef __NR_open /* Not all architectures have open() */

/* Is this an open() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_open, 0, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, args[1])),
BPF_JUMP(BPF_JMP | BPF_JA, 3, 0, 0),

#endif

Load system call number

For open(), load flags argument (args[1]) into accumulator,
and then skip to flags processing

(Some architectures don’t have open())

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-48 §20.6

Example: seccomp/seccomp_control_open.c

/* Is this an openat() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_openat, 1, 0),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof(struct seccomp_data, args[2])),

For openat(), load flags argument (args[2]) into
accumulator and continue to flags processing

Allow all other system calls

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-49 §20.6

Example: seccomp/seccomp_control_open.c

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_CREAT, 0, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_WRONLY | O_RDWR, 0, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ERRNO | ENOTSUP),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW)
};

Process flags value:

Test if O_CREAT bit is set in flags

True: skip 0 instructions ⇒ kill process

False: skip 1 instruction

Test if O_WRONLY or O_RDWR is set in flags

True: cause call to fail with ENOTSUP error in errno

False: allow call to proceed

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-50 §20.6

Example: seccomp/seccomp_control_open.c

int main(int argc, char *argv[]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
install_filter();

if (open("/tmp/a", O_RDONLY) == -1)
perror("open1");

if (open("/tmp/a", O_WRONLY) == -1)
perror("open2");

if (open("/tmp/a", O_RDWR) == -1)
perror("open3");

if (open("/tmp/a", O_CREAT | O_RDWR, 0600) == -1)
perror("open4");

exit(EXIT_SUCCESS);
}

Test open() calls with various flags

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-51 §20.6

Example: seccomp/seccomp_control_open.c

$ touch /tmp/a
$./seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call
$ echo $?
159

First open() succeeded

Second and third open() calls failed

Kernel produced ENOTSUP error for call

Fourth open() call caused process to be killed

(159 == 128 + 31; SIGSYS is signal 31)

System Programming·Linux Containers ©2024 M. Kerrisk Seccomp 20-52 §20.6

