A simple concurrent server design

Simplest way to implement a concurrent server is to create a
new child process to handle each client

1fd = socket(...);
bind(1fd, ...);
listen(1fd, backlog);
for (;;) {
cfd = accept(1fd, ...);
switch (fork()) {

case -1:
errExit ("fork");

case 0: /* CHILD */
close(1£fd); /* Not needed in child */
handleRequest (cfd) ;
exit (EXIT_SUCCESS) ; /* Closes cfd *x/

default: /* PARENT x*/
break; /* Falls through */

}

close(cfd); /* Parent doesn't need cfd */

}
@ Also need a SIGCHLD handler to reap terminated children
Linux/UNIX System Programming ©2023, Michael Kerrisk Sockets: Internet Domain 19-57 §19.6
Exercises

o Implement the following server [template: sockets/ex.is_shell_sv.c|:

is_shell_sv <port>

The server creates a socket that listens on the specified port and accepts client
requests containing shell commands. (/\ Each client sends just one command to
the server.) The server concurrently handles clients, executing each client’s
command, and passing the results back across the client’s socket.

Some hints:

@ To keep things simple, the server should obtain the client command by doing
a single read() (not my readLine() function!) with a large buffer, and assume
that whatever is read is the complete command.

@ A more sophisticated solution would involve the use of shutdown(fd,
SHUT_WR) (covered later) in the client, and a loop in the server
which reads until end-of-file.

@ Remember that read() does not null-terminate the returned buffer!

@ Easy execution of a shell command:
execl("/bin/sh", "sh", "-c", cmd, (char *) NULL);

@ To have the command send stdout and stderr to the socket, use dup2().

Linux/UNIX System Programming ©2023, Michael Kerrisk Sockets: Internet Domain 19-58 §19.6

Exercises

@ Even without writing a client (which is a following exercise), you can test the
server using ncat:

$ ncat <host> <port-number> <<< "cmd"

@ The bash-specific syntax “<<<"” means take standard input from the
following command-line argument.

@ For <host>, you could use localhost (or perhaps ip6-localhost).

Once you have a working server, check the following test cases:.

@ while true; do ncat <host> <port> <<< 'false'; done
If we create lots of children, is the server reaping the zombies? (Check the
output from ps axl | grep "defunct".)

@ See sockets/is_echo_sv.c for an example of a SIGCHLD handler and
how to install it with sigaction().

@ ncat <host> <port> <<< 'sleep 1'
Does this cause accept() in the server to fail with an error?

© ncat <host> <port> <<< 'rubbish'
Does a suitable error message appear for the client?

@ ncat <host> <port> <<< 'ls nonexistent-file'
Does the error message from /s appear for the client?

Linux/UNIX System Programming ©2023, Michael Kerrisk Sockets: Internet Domain 19-59 §19.6

Exercises

@ ncat <host> <port> <<< "echo $(seq 1 1000000 | tr -d '\012')"
Does a very long command either get executed correctly or produce a
suitable error message from the server?

@ Does your server handle the possibility that fork() may fail, by sending a
suitable error message back to the client? Test this by running the server
from a shell with a reduced process limit, such as:

$ ulimit -u 2000 # Per-UID process limit of 2000
$./ex.is_shell_sv <port>

And then from another shell, attempt to start multiple concurrent clients:

$ for p in $(seq 1 2000) ; do
(ncat localhost <port> <<< "sleep 10" &)
done

On the client side, do you see error messages sent by the server?

Linux/UNIX System Programming ©2023, Michael Kerrisk Sockets: Internet Domain 19-60 §19.6

Exercises

@ Write a client for the preceding server:

is_shell_cl <server-host> <server-port> 'shell command'

The client connects to the shell server, sends it a single shell command, reads the
results sent back across the socket by the server, and displays the results on stdout.
[template: sockets/ex.is_shell_cl.c]

0 Write a UDP client and server with the following command-line syntax:

id_sysquery_cl <server-host> <server-port> <query>
id_sysquery_sv <server-port>

@ The client sends a datagram to the server at the specified host and port.
The datagram contains the word given in query, which should be either of
the strings “uptime” or “version”. The client waits for the server to send a
datagram in response, and prints the contents of that datagram on standard
output.

@ The server binds its socket to the specified port and receives datagrams from
clients, and, depending on the content of the datagram, constructs a
datagram containing the contents of either /proc/uptime or
/proc/version, which it sends back to the client. If the client sends a
datagram containing an unexpected word, the server should send back a
datagram containing a suitable error message.

Linux/UNIX System Programming ©2023, Michael Kerrisk Sockets: Internet Domain 19-61 §19.6

