
Linux/UNIX IPC Programming

Alternative I/O Models: epoll

Michael Kerrisk, man7.org © 2024

January 2024

mtk@man7.org

Outline Rev: # c08bf53c67aa

9 Alternative I/O Models: epoll 9-1
9.1 Problems with poll() and select() 9-3
9.2 The epoll API 9-6
9.3 epoll events 9-17
9.4 epoll: edge-triggered notification 9-32
9.5 epoll: API quirks 9-46



Outline

9 Alternative I/O Models: epoll 9-1
9.1 Problems with poll() and select() 9-3
9.2 The epoll API 9-6
9.3 epoll events 9-17
9.4 epoll: edge-triggered notification 9-32
9.5 epoll: API quirks 9-46

Problems with poll() and select()

poll() + select() are portable, long-standing, and widely used

But, there are scalability problems when monitoring many
FDs, because, on each call:

1 Program passes a data structure to kernel describing all
FDs to be monitored

2 The kernel must recheck all specified FDs for readiness
This includes hooking (and subsequently unhooking) all
FDs to handle case where it is necessary to block

3 The kernel passes a modified data structure describing
readiness of all FDs back to program in user space

4 After the call, the program must inspect readiness state of
all FDs in modified data

⇒ Cost of select() and poll() scales with number of FDs
being monitored

[TLPI §63.2.5]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-4 §9.1



Problems with poll() and select()

poll() and select() have a design problem:
Typically, set of FDs monitored by application is static

(Or set changes only slowly)

But, kernel doesn’t remember monitored FDs between calls

⇒ Info on all FDs must be copied back & forth on each call

epoll improves performance by fixing this design problem

Kernel maintains a persistent set of FDs that application is
interested in

epoll cost scales according to number of I/O events

Much better performance when monitoring many FDs!

Signal-driven I/O scales similarly, for same reasons

[TLPI §63.4.5]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-5 §9.1



Outline

9 Alternative I/O Models: epoll 9-1
9.1 Problems with poll() and select() 9-3
9.2 The epoll API 9-6
9.3 epoll events 9-17
9.4 epoll: edge-triggered notification 9-32
9.5 epoll: API quirks 9-46

Overview

Like select() and poll(), epoll can monitor multiple FDs

epoll returns readiness information in similar manner to poll()

Two main advantages:

epoll provides much better performance when monitoring
large numbers of FDs (see TLPI §63.4.5)

epoll provides two notification modes: level-triggered
and edge-triggered

Default is level-triggered notification

select() and poll() provide only level-triggered notification

(Signal-driven I/O provides only edge-triggered notification)

Linux-specific, since kernel 2.6.0 (2003)

[TLPI §63.4]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-8 §9.2



epoll instances

Central data structure of epoll API is an epoll instance

Persistent data structure maintained in kernel space

Referred to in user space via file descriptor

Can (abstractly) be considered as container for two lists:

Interest list: list of FDs to be monitored

Ready list: list of FDs that are ready for I/O

Ready list is (dynamic) subset of interest list

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-9 §9.2

epoll APIs

The key epoll APIs are:

epoll_create() : create a new epoll instance and return FD
referring to instance

FD is used in the calls below

epoll_ctl() : modify interest list of epoll instance

Add FDs to/remove FDs from interest list

Modify events mask for FDs currently in interest list

epoll_wait() : return items from ready list of epoll instance

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-10 §9.2



epoll kernel data structures and APIs

events data ...

...

...

...

...

...

...

Interest list

Populated by kernel

based on interest list

and I/O events

References to

entries in

interest list

Ready list

epoll instance
File descriptor from

epoll_create() refers to

Populated/modified

by calls to

epoll_ctl()

(subset of) events + data

returned by calls to

epoll_wait()

User space Kernel space

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-11 §9.2

Creating an epoll instance: epoll_create()

#include <sys/epoll.h>
int epoll_create(int size);

Creates an epoll instance

size :

Since Linux 2.6.8: serves no purpose, but must be > 0

Before Linux 2.6.8: an estimate of number of FDs to be
monitored via this epoll instance

Returns file descriptor on success, or –1 on error

When FD is no longer required, it should be closed via
close()

Since Linux 2.6.27, epoll_create1() provides improved API

See the manual page

[TLPI §63.4.1]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-12 §9.2



Modifying the epoll interest list: epoll_ctl()

#include <sys/epoll.h>
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev);

Modifies the interest list associated with epoll FD, epfd

fd : identifies which FD in interest list is to have its settings
modified

Can be FD for pipe, FIFO, terminal, socket, POSIX MQ

Can also be an epoll FD

An epoll FD indicates as readable if ready list is nonempty

Can’t be FD for a regular file or directory

[TLPI §63.4.2]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-13 §9.2

epoll_ctl() op argument

The epoll_ctl() op argument is one of:

EPOLL_CTL_ADD: add fd to interest list

ev specifies events to be monitored for fd

If fd is already in interest list ⇒ EEXIST

EPOLL_CTL_MOD: modify settings of fd in interest list

ev specifies new settings to be associated with fd

If fd is not in interest list ⇒ ENOENT

EPOLL_CTL_DEL: remove fd from interest list

Also removes corresponding entry in ready list, if present

ev is ignored

If fd is not in interest list ⇒ ENOENT

Closing FD automatically removes it from epoll interest lists
" But this is not reliable: close does not occur in some
cases! See later...

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-14 §9.2



The epoll_event structure

epoll_ctl() ev argument is pointer to an epoll_event structure:

struct epoll_event {
uint32_t events; /* epoll events (bit mask) */
epoll_data_t data; /* User data */

};

typedef union epoll_data {
void *ptr; /* Pointer to user-defined data */
int fd; /* File descriptor */
uint32_t u32; /* 32-bit integer */
uint64_t u64; /* 64-bit integer */

} epoll_data_t;

ev.events : bit mask of events to monitor for fd

(Similar to events mask given to poll())

data : info to be passed back to caller of epoll_wait() when
fd later becomes ready

Union field: value is specified in one of the members

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-15 §9.2

Example: using epoll_create() and epoll_ctl()

int epfd = epoll_create(5);

struct epoll_event ev;
ev.data.fd = fd;
ev.events = EPOLLIN; /* Monitor for readability */

epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-16 §9.2



Outline

9 Alternative I/O Models: epoll 9-1
9.1 Problems with poll() and select() 9-3
9.2 The epoll API 9-6
9.3 epoll events 9-17
9.4 epoll: edge-triggered notification 9-32
9.5 epoll: API quirks 9-46

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

Returns info about ready FDs in interest list of epoll
instance of epfd

Blocks until at least one FD is ready

Info about ready FDs is returned in array evlist

I.e., can get information about multiple ready FDs with one
epoll_wait() call

(Caller allocates the evlist array)

maxevents : size of the evlist array

[TLPI §63.4.3]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-18 §9.3



Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

timeout specifies a timeout for call:

–1: block until an FD in interest list becomes ready

0: perform a nonblocking “poll” to see if any FDs in
interest list are ready

> 0: block for up to timeout milliseconds or until an FD in
interest list becomes ready

epoll_pwait2() (Linux 5.11) allows timeout with
nanosecond precision

Return value:

> 0: number of items placed in evlist

0: no FDs became ready within interval specified by timeout

–1: an error occurred
Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-19 §9.3

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

Info about multiple FDs can be returned in the array evlist

Each element of evlist returns info about one file descriptor:

events is a bit mask of events that have occurred for FD

data is ev.data value currently associated with FD in the
interest list

NB: the FD itself is not returned!
Instead, we put FD into ev.data.fd when calling epoll_ctl(),
so that it is returned via epoll_wait()

(Or, put FD into a structure pointed to by ev.data.ptr)

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-20 §9.3



Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

� If > maxevents FDs are ready, successive epoll_wait()
calls round-robin through FDs

Helps prevent file descriptors being starved of attention

� In multithreaded programs:

While one thread is blocked in epoll_wait(), another thread
can modify interest list (epoll_ctl())

epoll_wait() call will return if a newly added FD becomes
ready

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-21 §9.3

epoll events

Following table shows:

Bits given in ev.events to epoll_ctl()

Bits returned in evlist[].events by epoll_wait()
Bit epoll_ctl() ? epoll_wait() ? Description

EPOLLIN • • Normal-priority data can be read
EPOLLPRI • • High-priority data can be read
EPOLLRDHUP • • Shutdown on peer socket
EPOLLOUT • • Data can be written

EPOLLONESHOT •
Disable monitoring after event
notification

EPOLLET • Employ edge-triggered notification
EPOLLERR • An error has occurred
EPOLLHUP • A hangup occurred

Other than EPOLLONESHOT and EPOLLET, bits have same meaning as similarly named
poll() bit flags

EPOLLIN, EPOLLPRI, EPOLLRDHUP, and EPOLLOUT are returned by epoll_wait() only
if specified when adding FD using epoll_ctl()

[TLPI §63.4.3]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-22 §9.3



Example: altio/epoll_read.c

./epoll_read file...

Monitors one or more files using epoll API to see if input is
possible

Suitable files to give as arguments are:

FIFOs

Terminal device names

(May need to run sleep command in foreground on those
terminals, to prevent shell stealing input)

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-23 §9.3

Example: altio/epoll_read.c (1)

int epfd = epoll_create(argc - 1);

for (j = 1; j < argc; j++) {
int fd = open(argv[j], O_RDONLY);
printf("Opened \"%s\" on fd %d\n", argv[j], fd);

struct epoll_event ev;
ev.events = EPOLLIN;
ev.data.fd = fd;
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

}
int numOpenFds = argc - 1;

Create an epoll instance, obtaining epoll FD

Open each of the files named on command line

Monitor each file for input (EPOLLIN)

Put fd into ev.data, so it is returned by epoll_wait()

Add the FD to epoll interest list (epoll_ctl())

Track number of open FDs (in numOpenFds)

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-24 §9.3



Example: altio/epoll_read.c (2)

while (numOpenFds > 0) {
const int MAX_EVENTS = 5;
struct epoll_event evlist[MAX_EVENTS];

printf("About to epoll_wait()\n");
int ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);
if (ready == -1) {

if (errno == EINTR)
continue; /* Restart if interrupted by signal */

else
errExit("epoll_wait");

}

printf("Ready: %d\n", ready);

Loop, fetching epoll events and analyzing results

Loop terminates when no more FDs are open

epoll_wait() call places up to MAX_EVENTS events in evlist

timeout == –1 ⇒ infinite timeout

Return value from epoll_wait() is number of ready FDs

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-25 §9.3

Example: altio/epoll_read.c (3)

for (int j = 0; j < ready; j++) {
printf(" fd=%d; events: %s%s\n", evlist[j].data.fd,

(evlist[j].events & EPOLLIN) ? "EPOLLIN " : "",
(evlist[j].events & EPOLLHUP) ? "EPOLLHUP " : "");

const int BUF_SIZE = 10;
char buf[BUF_SIZE];
ssize_t nr = read(evlist[j].data.fd, buf, BUF_SIZE);
if (nr == -1)

errExit("read");
...

}

Iterate through ready items in evlist

Display events bits for each ready FD

Read from ready FD
Note that we don’t even need to check events

EPOLLIN ⇒ read() won’t block

EPOLLHUP ⇒ read() will return 0 (without blocking)

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-26 §9.3



Example: altio/epoll_read.c (4)

for (int j = 0; j < ready; j++) {
...
if (nr == 0) { /* read() indicated end-of-file */

printf(" closing fd %d\n", evlist[j].data.fd);

epoll_ctl(epfd, EPOLL_CTL_DEL, evlist[j].data.fd, NULL);
close(evlist[j].data.fd);
numOpenFds--;

} else {
printf(" read %zd bytes: %.*s\n", nr, (int) nr, buf);

}
}

}

If read() returned 0 (EOF):

Remove FD from epoll interest list

Close FD

Otherwise, display data that was read

%.*s ⇒ field width taken from argument list (s)

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-27 §9.3

Exercises

1 Write a client ([template: altio/ex.is_chat_cl.c]) that
communicates with the TCP chat server program, is_chat_sv.c.
The program should be run with the following command line:

./is_chat_cl <host> <port> [<nickname>]

The program should create a connection to the server, and then use
the epoll API to monitor both the terminal and the TCP socket for
input. All input that becomes available on the socket should be written
to the terminal and vice versa.

Each time the program sends input from the terminal to the
socket, that input should be prepended by the nickname supplied
on the command line. If no nickname is supplied, then use the
string returned by getlogin(3). (snprintf(3) provides an easy way
to concatenate the strings.)

[Exercise continues on next slide]

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-28 §9.3



Exercises

Both the terminal and the socket will indicate as readable
(EPOLLIN) when input becomes available or when an end-of-file
condition occurs.

The program should terminate if it detects end-of-file on either
file descriptor.

Calling epoll_wait() with maxevents==1 will simplify the code!

struct epoll_event rev;
epoll_wait(epfd, &rev, 1, -1);

(This is simpler, because then you don’t have to iterate through
an array that would in any case contain at most two entries.)

As a simplification, you can assume that the socket is always
writable (i.e., you don’t need to monitor for the socket for
EPOLLOUT).

Bonus points if you find a way to crash the server (reproducibly)!

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-29 §9.3

Exercises

2 Write the chat server ([template: altio/ex.is_chat_sv.c]).
Note the following points:

The program should take one command-line argument: the port
number to which it should bind its listening socket.

The program should accept and handle multiple simultaneous
client connections. Input read from any client should be
broadcast to all other clients.

Use the epoll API to manage the file descriptors.

You should use nonblocking file descriptors to ensure that the
server never blocks when accepting connections or when reading
or writing to clients.

When the server detects end-of file or an error (other than
EAGAIN) while reading or writing on a client socket, it should
remove that socket from the epoll interest list and close the
socket.

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-30 §9.3



Exercises

3 Write a program ([template: altio/ex.epoll_pipes.c]) which
performs the same task as the altio/poll_pipes.c program, but
uses the epoll API instead of poll().
Hints:

After writing to the pipes, you will need to call epoll_wait() in a
loop. The loop should be terminated when epoll_wait() indicates
that there are no more ready file descriptors.

After each call to epoll_wait(), you should display each ready
pipe read file descriptor and then drain all input from that file
descriptor so that it does not indicate as ready in future calls to
epoll_wait().

In order to drain a pipe without blocking, you will need to make
the file descriptor for the read end of the pipe nonblocking.

Linux/UNIX IPC Programming ©2024 M. Kerrisk Alternative I/O Models: epoll 9-31 §9.3


