
NDC TechTown 2018

System Call Tracing with strace
Michael Kerrisk, man7.org c© 2018

mtk@man7.org

29 August 2018, Kongsberg, Norway

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

strace(1)

A tool to trace system calls made by a user-space process
Implemented via ptrace(2)

Or: a debugging tool for tracing complete conversation
between application and kernel

Application source code is not required
Answer questions like:

What system calls are employed by application?
Which files does application touch?
What arguments are being passed to each system call?
Which system calls are failing, and why (errno)?

There is also a loosely related ltrace(1) command
Trace library function calls in dynamic shared objects (e.g.,
libc)
We won’t cover this tool

c©2018, Michael Kerrisk System Call Tracing with strace 4 §1.1

strace(1)

Log information is provided in symbolic form
System call names are shown
We see signal names (not numbers)
Strings printed as characters (up to 32 bytes, by default)
Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together
Structures displayed with labeled fields
errno values displayed symbolically + matching error text
“large” arguments and structures are abbreviated by default

fstat (3, { st_dev = makedev (8, 2), st_ino =401567 ,
st_mode = S_IFREG |0755 , st_nlink =1, st_uid =0, st_gid =0,
st_blksize =4096 , st_blocks =280 , st_size =142136 ,
st_atime =2015/02/17 -17:17:25 , st_mtime =2013/12/27 -22:19:58 ,
st_ctime =2014/04/07 -21:44:17 }) = 0

open("/ lib64 / liblzma .so .5", O_RDONLY | O_CLOEXEC) = 3

c©2018, Michael Kerrisk System Call Tracing with strace 5 §1.1

Simple usage: tracing a command at the command line

A very simple C program:
int main(int argc , char *argv []) {
define STR "Hello world\n"

write(STDOUT_FILENO , STR , strlen (STR));
exit(EXIT_SUCCESS);

}

Run strace(1), directing logging output (–o) to a file:
$ strace -o strace .log ./ hello_world
Hello world

(By default, trace output goes to standard error)
B On some systems, may first need to:
echo 0 > /proc/sys/ kernel /yama/ ptrace_scope

Yama LSM disables ptrace(2) to prevent attack escalation;
see man page

c©2018, Michael Kerrisk System Call Tracing with strace 6 §1.1

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

Even simple programs make lots of system calls!
25 in this case (many have been edited from above output)

Most output in this trace relates to finding and loading
shared libraries

First call (execve()) was used by shell to load our program
Only last two system calls were made by our program

c©2018, Michael Kerrisk System Call Tracing with strace 7 §1.1

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

For each system call, we see:
Name of system call
Values passed in/returned via arguments
System call return value
Symbolic errno value (+ explanatory text) on syscall failures

c©2018, Michael Kerrisk System Call Tracing with strace 8 §1.1

A gotcha...

The last call in our program was:
exit(EXIT_SUCCESS);

But strace showed us:
exit_group (0) = ?

Some detective work:
We “know” exit(3) is a library function that calls _exit(2)
But where did exit_group() come from?
_exit(2) man page tells us:
$ man 2 _exit
...
C library / kernel differences

In glibc up to version 2.3 , the _exit () wrapper function
invoked the kernel system call of the same name. Since
glibc 2.3 , the wrapper function invokes exit_group (2) ,
in order to terminate all of the threads in a process .

⇒ may need to dig deeper to understand strace(1) output
c©2018, Michael Kerrisk System Call Tracing with strace 9 §1.1

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

Tracing child processes

By default, strace does not trace children of traced process
–f option causes children to be traced

Each trace line is prefixed by PID
In a program that employs POSIX threads, each line shows
kernel thread ID (gettid())

c©2018, Michael Kerrisk System Call Tracing with strace 11 §1.2

Tracing child processes: strace/fork_exec.c

1 int main(int argc , char *argv []) {
2 pid_t childPid ;
3 char * newEnv [] = {"ONE =1", "TWO =2", NULL };
4
5 printf ("PID of parent : %ld\n", (long) getpid ());
6 childPid = fork ();
7 if (childPid == 0) { /* Child */
8 printf ("PID of child: %ld\n", (long) getpid ());
9 if (argc > 1) {

10 execve (argv [1], &argv [1], newEnv);
11 errExit (" execve ");
12 }
13 exit(EXIT_SUCCESS);
14 }
15 wait(NULL); /* Parent waits for child */
16 exit(EXIT_SUCCESS);
17 }

$ strace -f -o strace .log ./ fork_exec
PID of parent : 1939
PID of child: 1940

c©2018, Michael Kerrisk System Call Tracing with strace 12 §1.2

Tracing child processes: strace/fork_exec.c

$ cat strace .log
1939 execve ("./ fork_exec ", ["./ fork_exec "], [/* 110 vars */]) = 0
...
1939 clone (child_stack =0, flags = CLONE_CHILD_CLEARTID |

CLONE_CHILD_SETTID |SIGCHLD , child_tidptr =0 x7fe484b2ea10) = 1940
1939 wait4 (-1, <unfinished ... >
1940 write (1, "PID of child : 1940\ n", 21) = 21
1940 exit_group (0) = ?
1940 +++ exited with 0 +++
1939 <... wait4 resumed > NULL , 0, NULL) = 1940
1939 --- SIGCHLD { si_signo =SIGCHLD , si_code = CLD_EXITED ,

si_pid =1940 , si_uid =1000 , si_status =0, si_utime =0,
si_stime =0} ---

1939 exit_group (0) = ?
1939 +++ exited with 0 +++

Each line of trace output is prefixed with corresponding PID
Inside glibc, fork() is actually a wrapper that calls clone(2)
wait() is a wrapper that calls wait4(2)
We see two lines of output for wait4() because call blocks
and then resumes
strace shows us that parent received a SIGCHLD signal

c©2018, Michael Kerrisk System Call Tracing with strace 13 §1.2

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

Selecting system calls to be traced

strace –e can be used to select system calls to be traced
–e trace=<syscall>[,<syscall>...]

Specify system call(s) that should be traced
Other system calls are ignored

$ strace -o strace .log -e trace=open ,close ls

–e trace=!<syscall>[,<syscall>...]
Exclude specified system call(s) from tracing

Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)

B “!” needs to be quoted to avoid shell interpretation
–e trace=/<regexp>

Trace syscalls whose names match regular expression
April 2017; expression will probably need to be quoted...

c©2018, Michael Kerrisk System Call Tracing with strace 15 §1.3

Selecting system calls by category

–e trace=<syscall-category> trace a category of syscalls
Categories include:

%file: trace all syscalls that take a filename as argument
open(), stat(), truncate(), chmod(), setxattr(), link()...

%desc: trace file-descriptor-related syscalls
read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fcntl(), epoll_create(), epoll_wait()...

%process: trace process management syscalls
fork(), clone(), exit_group(), execve(), wait4(), unshare()...

%network: trace network-related syscalls
socket(), bind(), listen(), connect(), sendmsg()...

%signal: trace signal-related syscalls
kill(), rt_sigaction(), rt_sigprocmask(), rt_sigqueueinfo()...

%memory: trace memory-mapping-related syscalls
mmap(), mprotect(), mlock()...

c©2018, Michael Kerrisk System Call Tracing with strace 16 §1.3

Filtering signals

strace –e signal=set
Trace only specified set of signals
“sig” prefix in names is optional; following are equivalent:
$ strace -o strace .log -e signal =sigio ,int ls > /dev/null
$ strace -o strace .log -e signal =io ,int ls > /dev/null

strace –e signal=!set
Exclude specified signals from tracing

c©2018, Michael Kerrisk System Call Tracing with strace 17 §1.3

Filtering by pathname

strace –P pathname: trace only system calls that access file
at pathname

Specify multiple –P options to trace multiple paths
Example:
$ strace -o strace .log -P / lib64 /libc.so .6 ls > /dev/null
Requested path ’/ lib64 /libc.so .6 ’ resolved into

’/usr/ lib64 /libc -2.18. so ’
$ cat strace .log
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
read(3, "\177 ELF \2\1\1\3\0\0\0\0\0\0\0\0\3\0 >\0\1\0\0\0 p\36

\2\0\0\0\0\0 "... , 832) = 832
fstat (3, { st_mode = S_IFREG |0755 , st_size =2093096 , ...}) = 0
mmap(NULL , 3920480 , PROT_READ |PROT_EXEC ,

MAP_PRIVATE | MAP_DENYWRITE , 3, 0) = 0 x7f8511fa3000
mmap (0 x7f8512356000 , 24576 , PROT_READ | PROT_WRITE ,

MAP_PRIVATE | MAP_FIXED | MAP_DENYWRITE , 3, 0 x1b3000)
= 0 x7f8512356000

close (3) = 0
+++ exited with 0 +++

strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

c©2018, Michael Kerrisk System Call Tracing with strace 18 §1.3

Mapping file descriptors to pathnames

–y option causes strace to display pathnames corresponding
to each file descriptor

Useful info is also displayed for other types of file
descriptors, such as pipes and sockets

$ strace -y cat greet
...
openat (AT_FDCWD , "greet", O_RDONLY) = 3</ home/mtk/greet >
fstat(3</ home/mtk/greet >, { st_mode = S_IFREG |0644 , ...
read(3</ home/mtk/greet >, "hello world\n", 131072) = 12
write(1</ dev/pts /11>, "hello world\n", 12) = 12
read(3</ home/mtk/greet >, "", 131072) = 0
close(3</ home/mtk/tlpi/code/greet >) = 0
...

–yy is as for –y but shows additional protocol-specific info
for sockets

write (3<TCP :[10.0.20.135:33522 - >213.131.240.174:80] > ,
"GET / HTTP /1.1\r\nUser -Agent: Wget"..., 135) = 135
read(3<TCP :[10.0.20.135:33522 - >213.131.240.174:80] > ,
"HTTP /1.1 200 OK\r\nDate: Thu , 19 J"... , 253) = 253

c©2018, Michael Kerrisk System Call Tracing with strace 19 §1.3

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

System call tampering

strace can be used to modify behavior of selected syscall(s)
Initial feature implementation completed in early 2017

Various possible effects:
Inject delay before/after syscall
Generate a signal on syscall
Bypass execution of syscall, making it return a “success”
value or fail with specified value in errno
(Limited) ability to choose which invocation of syscall will
be modified

Syntax: strace -e inject=<syscall-set>[:<option>]...
syscall-set is set of syscalls whose behavior will be modified

c©2018, Michael Kerrisk System Call Tracing with strace 21 §1.4

strace -e inject options

:error=errnum : syscall is not executed; returns failure
status with errno set as specified
:retval=value : syscall is not executed; returns specified
“success” value

Can’t specify both :retval and :errno together
:signal=sig : deliver specified signal on entry to syscall
:delay_enter=usecs , :delay_exit=usecs : delay for usecs
microseconds on entry to/return from syscall
:when=expr : specify which invocation(s) to tamper with

:when=N : tamper with invocation N
:when=N+ : tamper starting at Nth invocation
:when=N+S : tamper with invocation N, and then every S
invocations
Range of N and S is 1..65535

c©2018, Michael Kerrisk System Call Tracing with strace 22 §1.4

Example

$ strace -y -e close \
-e inject =close:error =22: when =3 /bin/ls > d

close (3</ etc/ld.so.cache >) = 0
close (3</ usr/lib64/ libselinux .so.1>) = 0
close (3</ usr/lib64/ libcap .so .2.25 >) = -1 EINVAL
(Invalid argument) (INJECTED)
close (3</ usr/lib64/ libcap .so .2.25 >) = 0
/bin/ls: error while loading shared libraries : libcap .so .2:
cannot close file descriptor : Invalid argument
+++ exited with 127 +++

Use –y to show pathnames corresponding to file descriptors
Inject error 22 (EINVAL) on third call to close()
Third close() was not executed; an error return was injected

(After that, ls got sad)

c©2018, Michael Kerrisk System Call Tracing with strace 23 §1.4

Outline

1 Getting started 3
2 Tracing child processes 10
3 Filtering strace output 14
4 System call tampering 20
5 Further strace options 24

Obtaining a system call summary

strace –c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null
% time seconds usecs /call calls errors syscall
------ ----------- ----------- --------- --------- --------------

21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl

8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close
2.86 0.000085 43 2 socket
2.82 0.000084 42 2 2 connect

...
------ ----------- ----------- --------- --------- --------------
100.00 0.002976 442 13 total

Treat time measurements as indicative only, since strace
adds overhead to each syscall

c©2018, Michael Kerrisk System Call Tracing with strace 25 §1.5

Tracing live processes

–p PID: trace running process with specified PID
Type Control-C to cease tracing
To trace multiple processes, specify –p multiple times
Can trace only processes you own
B B tracing a process can heavily affect performance

E.g., up to two orders of magnitude slow-down in syscalls
B Think twice before using in a production environment

–p PID -f: will trace all threads in specified process

c©2018, Michael Kerrisk System Call Tracing with strace 26 §1.5

Further strace options

–v: don’t abbreviate arguments (structures, etc.)
Output can be quite verbose...

–s strsize: maximum number of bytes to display for strings
Default is 32 characters
Pathnames are always printed in full

Various options show start time or duration of system calls
–t, –tt: prefix each trace line with wall-clock time

–tt also adds microseconds
–T: show time spent in syscall

But treat as indications only, since strace causes overhead
on syscalls

–i: print value of instruction pointer on each system call

c©2018, Michael Kerrisk System Call Tracing with strace 27 §1.5

Thanks!
Michael Kerrisk mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

Training: Linux system programming, security and isolation APIs,
and more; http://man7.org/training/

The Linux Programming Interface, http://man7.org/tlpi/

	System Call Tracing with strace 1
	Getting started 3
	Tracing child processes 10
	Filtering strace output 14
	System call tampering 20
	Further strace options 24

